1
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Native and introduced Argentine ant populations are characterised by distinct transcriptomic signatures associated with behaviour and immunity

      , , , , , ,

      NeoBiota

      Pensoft Publishers

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Biological invasions can be influenced by trait variation in the invader, such as behavioural traits and ecological factors, such as variation in pathogen pressure. High-throughput nucleotide sequencing has increased our capacity to investigate the genomic basis of the functional changes associated with biological invasions. Here, we used RNA-sequencing in Argentina and California, Australia and New Zealand to investigate if native and introduced Argentine ant populations were characterised by distinct transcriptomic signatures. We focused our analysis on viral pressure and immunity, as well as genes associated with biogenic amines known to modulate key behaviour in social insects. Using a combination of differential expression analysis, gene co-expression network analysis and candidate gene approach, we show that native and introduced populations have distinct transcriptomic signatures. Genes associated with biogenic amines were overall up-regulated in the native range compared to introduced populations. Although we found no significant variation in overall viral loads amongst regions for viruses known to infect Argentine ants, viral diversity was lower in most of the introduced range which was interestingly associated with down-regulation of the RNAi immune pathway, primarily directed against viruses. Altogether, our data show that Argentine ant populations exhibit range-specific transcriptomic signatures, perhaps reflecting regional adaptations that may contribute to the ecological success of introduced populations.

          Related collections

          Most cited references 45

          • Record: found
          • Abstract: found
          • Article: not found

          Streaming fragment assignment for real-time analysis of sequencing experiments

          We present eXpress, a software package for highly efficient probabilistic assignment of ambiguously mapping sequenced fragments. eXpress uses a streaming algorithm with linear run time and constant memory use. It can determine abundances of sequenced molecules in real time, and can be applied to ChIP-seq, metagenomics and other large-scale sequencing data. We demonstrate its use on RNA-seq data, showing greater efficiency than other quantification methods.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Introduced species and their missing parasites.

            Damage caused by introduced species results from the high population densities and large body sizes that they attain in their new location. Escape from the effects of natural enemies is a frequent explanation given for the success of introduced species. Because some parasites can reduce host density and decrease body size, an invader that leaves parasites behind and encounters few new parasites can experience a demographic release and become a pest. To test whether introduced species are less parasitized, we have compared the parasites of exotic species in their native and introduced ranges, using 26 host species of molluscs, crustaceans, fishes, birds, mammals, amphibians and reptiles. Here we report that the number of parasite species found in native populations is twice that found in exotic populations. In addition, introduced populations are less heavily parasitized (in terms of percentage infected) than are native populations. Reduced parasitization of introduced species has several causes, including reduced probability of the introduction of parasites with exotic species (or early extinction after host establishment), absence of other required hosts in the new location, and the host-specific limitations of native parasites adapting to new hosts.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Immune pathways and defence mechanisms in honey bees Apis mellifera

              Social insects are able to mount both group-level and individual defences against pathogens. Here we focus on individual defences, by presenting a genome-wide analysis of immunity in a social insect, the honey bee Apis mellifera. We present honey bee models for each of four signalling pathways associated with immunity, identifying plausible orthologues for nearly all predicted pathway members. When compared to the sequenced Drosophila and Anopheles genomes, honey bees possess roughly one-third as many genes in 17 gene families implicated in insect immunity. We suggest that an implied reduction in immune flexibility in bees reflects either the strength of social barriers to disease, or a tendency for bees to be attacked by a limited set of highly coevolved pathogens.
                Bookmark

                Author and article information

                Journal
                NeoBiota
                NB
                Pensoft Publishers
                1314-2488
                1619-0033
                August 19 2019
                August 19 2019
                : 49
                : 105-126
                Article
                10.3897/neobiota.49.36086
                © 2019

                Comments

                Comment on this article