7
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Environmental impact of geometric earthwork construction in pre-Columbian Amazonia

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          There is considerable controversy over whether pre-Columbian (pre-A.D. 1492) Amazonia was largely "pristine" and sparsely populated by slash-and-burn agriculturists, or instead a densely populated, domesticated landscape, heavily altered by extensive deforestation and anthropogenic burning. The discovery of hundreds of large geometric earthworks beneath intact rainforest across southern Amazonia challenges its status as a pristine landscape, and has been assumed to indicate extensive pre-Columbian deforestation by large populations. We tested these assumptions using coupled local- and regional-scale paleoecological records to reconstruct land use on an earthwork site in northeast Bolivia within the context of regional, climate-driven biome changes. This approach revealed evidence for an alternative scenario of Amazonian land use, which did not necessitate labor-intensive rainforest clearance for earthwork construction. Instead, we show that the inhabitants exploited a naturally open savanna landscape that they maintained around their settlement despite the climatically driven rainforest expansion that began ∼2,000 y ago across the region. Earthwork construction and agriculture on terra firme landscapes currently occupied by the seasonal rainforests of southern Amazonia may therefore not have necessitated large-scale deforestation using stone tools. This finding implies far less labor--and potentially lower population density--than previously supposed. Our findings demonstrate that current debates over the magnitude and nature of pre-Columbian Amazonian land use, and its impact on global biogeochemical cycling, are potentially flawed because they do not consider this land use in the context of climate-driven forest-savanna biome shifts through the mid-to-late Holocene.

          Related collections

          Most cited references35

          • Record: found
          • Abstract: not found
          • Article: not found

          Pollen Representation of Vegetation in Quaternary Sediments: Theory and Method in Patchy Vegetation

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The history of South American tropical precipitation for the past 25,000 years.

            Long sediment cores recovered from the deep portions of Lake Titicaca are used to reconstruct the precipitation history of tropical South America for the past 25,000 years. Lake Titicaca was a deep, fresh, and continuously overflowing lake during the last glacial stage, from before 25,000 to 15,000 calibrated years before the present (cal yr B.P.), signifying that during the last glacial maximum (LGM), the Altiplano of Bolivia and Peru and much of the Amazon basin were wetter than today. The LGM in this part of the Andes is dated at 21,000 cal yr B.P., approximately coincident with the global LGM. Maximum aridity and lowest lake level occurred in the early and middle Holocene (8000 to 5500 cal yr B.P.) during a time of low summer insolation. Today, rising levels of Lake Titicaca and wet conditions in Amazonia are correlated with anomalously cold sea-surface temperatures in the northern equatorial Atlantic. Likewise, during the deglacial and Holocene periods, there were several millennial-scale wet phases on the Altiplano and in Amazonia that coincided with anomalously cold periods in the equatorial and high-latitude North Atlantic, such as the Younger Dryas.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Millennial-scale dynamics of southern Amazonian rain forests.

              Amazonian rain forest-savanna boundaries are highly sensitive to climatic change and may also play an important role in rain forest speciation. However, their dynamics over millennial time scales are poorly understood. Here, we present late Quaternary pollen records from the southern margin of Amazonia, which show that the humid evergreen rain forests of eastern Bolivia have been expanding southward over the past 3000 years and that their present-day limit represents the southernmost extent of Amazonian rain forest over at least the past 50,000 years. This rain forest expansion is attributed to increased seasonal latitudinal migration of the Intertropical Convergence Zone, which can in turn be explained by Milankovitch astronomic forcing.
                Bookmark

                Author and article information

                Journal
                Proceedings of the National Academy of Sciences
                Proceedings of the National Academy of Sciences
                Proceedings of the National Academy of Sciences
                0027-8424
                1091-6490
                July 22 2014
                July 22 2014
                July 07 2014
                July 22 2014
                : 111
                : 29
                : 10497-10502
                Article
                10.1073/pnas.1321770111
                4115532
                25002502
                eee23a92-4314-4e9c-8c10-c2cf225c9ee2
                © 2014
                History

                Comments

                Comment on this article