16
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Insect flight dynamics: Stability and control

      Reviews of Modern Physics
      American Physical Society (APS)

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references120

          • Record: found
          • Abstract: found
          • Article: not found

          Wing rotation and the aerodynamic basis of insect flight.

          The enhanced aerodynamic performance of insects results from an interaction of three distinct yet interactive mechanisms: delayed stall, rotational circulation, and wake capture. Delayed stall functions during the translational portions of the stroke, when the wings sweep through the air with a large angle of attack. In contrast, rotational circulation and wake capture generate aerodynamic forces during stroke reversals, when the wings rapidly rotate and change direction. In addition to contributing to the lift required to keep an insect aloft, these two rotational mechanisms provide a potent means by which the animal can modulate the direction and magnitude of flight forces during steering maneuvers. A comprehensive theory incorporating both translational and rotational mechanisms may explain the diverse patterns of wing motion displayed by different species of insects.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Leading-edge vortices in insect flight

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Controlled flight of a biologically inspired, insect-scale robot.

              Flies are among the most agile flying creatures on Earth. To mimic this aerial prowess in a similarly sized robot requires tiny, high-efficiency mechanical components that pose miniaturization challenges governed by force-scaling laws, suggesting unconventional solutions for propulsion, actuation, and manufacturing. To this end, we developed high-power-density piezoelectric flight muscles and a manufacturing methodology capable of rapidly prototyping articulated, flexure-based sub-millimeter mechanisms. We built an 80-milligram, insect-scale, flapping-wing robot modeled loosely on the morphology of flies. Using a modular approach to flight control that relies on limited information about the robot's dynamics, we demonstrated tethered but unconstrained stable hovering and basic controlled flight maneuvers. The result validates a sufficient suite of innovations for achieving artificial, insect-like flight.
                Bookmark

                Author and article information

                Journal
                RMPHAT
                Reviews of Modern Physics
                Rev. Mod. Phys.
                American Physical Society (APS)
                0034-6861
                1539-0756
                May 2014
                May 2014
                : 86
                : 2
                : 615-646
                Article
                10.1103/RevModPhys.86.615
                eee81443-c86f-4d76-a5df-66c9362108dd
                © 2014

                http://link.aps.org/licenses/aps-default-license

                History

                Comments

                Comment on this article