19
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Guided genetic screen to identify genes essential in the regeneration of hair cells and other tissues

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Regenerative medicine holds great promise for both degenerative diseases and traumatic tissue injury which represent significant challenges to the health care system. Hearing loss, which affects hundreds of millions of people worldwide, is caused primarily by a permanent loss of the mechanosensory receptors of the inner ear known as hair cells. This failure to regenerate hair cells after loss is limited to mammals, while all other non-mammalian vertebrates tested were able to completely regenerate these mechanosensory receptors after injury. To understand the mechanism of hair cell regeneration and its association with regeneration of other tissues, we performed a guided mutagenesis screen using zebrafish lateral line hair cells as a screening platform to identify genes that are essential for hair cell regeneration, and further investigated how genes essential for hair cell regeneration were involved in the regeneration of other tissues. We created genetic mutations either by retroviral insertion or CRISPR/Cas9 approaches, and developed a high-throughput screening pipeline for analyzing hair cell development and regeneration. We screened 254 gene mutations and identified 7 genes specifically affecting hair cell regeneration. These hair cell regeneration genes fell into distinct and somewhat surprising functional categories. By examining the regeneration of caudal fin and liver, we found these hair cell regeneration genes often also affected other types of tissue regeneration. Therefore, our results demonstrate guided screening is an effective approach to discover regeneration candidates, and hair cell regeneration is associated with other tissue regeneration.

          Identifying regenerative genes in non-mammalian vertebrates

          A study on zebrafish has genetically screened 254 genes and identified 7 genes implicated in the development and regeneration of hair cells and other tissues. Humans and other mammals cannot regrow hair cells—inner-ear sensory receptors that enable hearing—whereas non-mammalian vertebrates, including zebrafish, can regrow these following injury. Researchers from the United States, led by the National Institutes of Health’s Shawn Burgess, screened adult zebrafish for genes active during the regeneration of inner-ear epithelium. The researchers then produced zebrafish without these genes to study their functions. The studies tested 254 genes known to respond during regeneration, and identified seven specifically impacting regeneration. Most of these seven genes also functioned in liver and fin tissue regeneration. Understanding the mechanisms of these genes may enable future research into regenerative therapies in humans.

          Related collections

          Most cited references44

          • Record: found
          • Abstract: found
          • Article: not found
          Is Open Access

          The zebrafish reference genome sequence and its relationship to the human genome.

          Zebrafish have become a popular organism for the study of vertebrate gene function. The virtually transparent embryos of this species, and the ability to accelerate genetic studies by gene knockdown or overexpression, have led to the widespread use of zebrafish in the detailed investigation of vertebrate gene function and increasingly, the study of human genetic disease. However, for effective modelling of human genetic disease it is important to understand the extent to which zebrafish genes and gene structures are related to orthologous human genes. To examine this, we generated a high-quality sequence assembly of the zebrafish genome, made up of an overlapping set of completely sequenced large-insert clones that were ordered and oriented using a high-resolution high-density meiotic map. Detailed automatic and manual annotation provides evidence of more than 26,000 protein-coding genes, the largest gene set of any vertebrate so far sequenced. Comparison to the human reference genome shows that approximately 70% of human genes have at least one obvious zebrafish orthologue. In addition, the high quality of this genome assembly provides a clearer understanding of key genomic features such as a unique repeat content, a scarcity of pseudogenes, an enrichment of zebrafish-specific genes on chromosome 4 and chromosomal regions that influence sex determination.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            A systematic genome-wide analysis of zebrafish protein-coding gene function

            Since the publication of the human reference genome, the identities of specific genes associated with human diseases are being discovered at an enormous rate. A central problem is that the biological activity of these genes is often unclear. Detailed investigations in vertebrate model organisms, typically mice, have been essential for understanding the activities of many orthologues of these disease-associated genes. Although gene-targeting approaches 1-3 and phenotype analysis have led to a detailed understanding of nearly 6,000 protein-coding genes 3,4 , this number falls significantly short of all >22,000 mouse protein-coding genes 5 . Similarly, in zebrafish genetics, one-by-one gene studies using positional cloning 6 , insertional mutagenesis 7-9 , antisense morpholino oligonucleotides 10 , targeted re-sequencing 11-13 and zinc finger and TAL endonucleases 14-17 have made significant contributions to our understanding of the biological activity of vertebrate genes, but the number of genes studied again falls well short of the >26,000 zebrafish protein-coding genes 18 . Importantly, for both mice and zebrafish, none of these strategies is particularly suited to the rapid generation of knockouts in thousands of genes and the assessment of their biological activity. Enabled by a well-annotated zebrafish reference genome sequence 18,19 , high-throughput sequencing and efficient chemical mutagenesis, we describe an active project that aims to identify and phenotype disruptive mutations in every zebrafish protein-coding gene. Thus far we have identified potentially disruptive mutations in more than 38% of all known protein coding genes. We have developed a multi-allelic phenotyping scheme to efficiently assess the effects of each allele during embryogenesis and have analysed the phenotypic consequences of over 1000 alleles. All mutant alleles and data are available to the community and our phenotyping scheme is adaptable to phenotypic analysis beyond embryogenesis.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Neomycin-induced hair cell death and rapid regeneration in the lateral line of zebrafish (Danio rerio).

              Mechanoreceptive hair cells are extremely sensitive to aminoglycoside antibiotics, including neomycin. Hair cell survival was assessed in larval wild-type zebrafish lateral line neuromasts 4 h after initial exposure to a range of neomycin concentrations for 1 h. Each of the lateral line neuromasts was scored in live fish for the presence or absence of hair cells using the fluorescent vital dye DASPEI to selectively label hair cells. All neuromasts were devoid of DASPEI-labeled hair cells 4 h after 500 microM neomycin exposure. Vital DASPEI staining was proportional to the number of hair cells per neuromast identified in fixed larvae using immunocytochemistry for acetylated tubulin and phalloidin labeling. The time course of hair cell regeneration in the lateral line neuromasts was also analyzed following neomycin-induced damage. Regenerated hair cells were first observed using live DASPEI staining 12 and 24 h following neomycin treatment. The potential role of proliferation in regenerating hair cells was analyzed. A 1 h pulse-fix protocol using bromodeoxyuridine (BrdU) incorporation was used to identify S-phase cells in neuromasts. BrdU incorporation in neomycin-damaged neuromasts did not differ from control neuromasts 4 h after drug exposure but was dramatically upregulated after 12 h. The proliferative cells identified during a 1 h period at 12 h after neomycin treatment were able to give rise to new hair cells by 24-48 h after drug treatment. The results presented here provide a standardized preparation for studying and identifying genes that influence vertebrate hair cell death, survival, and regeneration following ototoxic insults.
                Bookmark

                Author and article information

                Contributors
                +(301) 594-8224 , burgess@mail.nih.gov
                Journal
                NPJ Regen Med
                NPJ Regen Med
                NPJ Regenerative Medicine
                Nature Publishing Group UK (London )
                2057-3995
                4 June 2018
                4 June 2018
                2018
                : 3
                : 11
                Affiliations
                [1 ]ISNI 0000 0001 2233 9230, GRID grid.280128.1, Translational and Functional Genomics Branch, , National Human Genome Research Institute, ; Bethesda, MD 20892 USA
                [2 ]ISNI 0000 0000 8527 6890, GRID grid.274264.1, Functional and Chemical Genomics Research Program, , Oklahoma Medical Research Foundation, ; Oklahoma City, OK 73104 USA
                [3 ]ISNI 0000 0000 9632 6718, GRID grid.19006.3e, Department of Molecular, Cell, and Developmental Biology, , University of California Los Angeles, ; Los Angeles, CA 90095 USA
                Author information
                http://orcid.org/0000-0001-8445-3928
                http://orcid.org/0000-0003-1147-0596
                Article
                50
                10.1038/s41536-018-0050-7
                5986822
                29872546
                eeef6155-e6f8-40b1-8032-0b1f21e1ee13
                © The Author(s) 2018

                Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

                History
                : 1 September 2017
                : 18 April 2018
                : 8 May 2018
                Categories
                Article
                Custom metadata
                © The Author(s) 2018

                Comments

                Comment on this article