15
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Evidence for Superfluidity of Ultracold Fermions in an Optical Lattice

      Preprint

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The study of superfluid fermion pairs in a periodic potential has important ramifications for understanding superconductivity in crystalline materials. Using cold atomic gases, various condensed matter models can be studied in a highly controllable environment. Weakly repulsive fermions in an optical lattice could undergo d-wave pairing at low temperatures, a possible mechanism for high temperature superconductivity in the cuprates. The lattice potential could also strongly increase the critical temperature for s-wave superfluidity. Recent experimental advances in the bulk include the observation of fermion pair condensates and high-temperature superfluidity. Experiments with fermions and bosonic bound pairs in optical lattices have been reported, but have not yet addressed superfluid behavior. Here we show that when a condensate of fermionic atom pairs was released from an optical lattice, distinct interference peaks appear, implying long range order, a property of a superfluid. Conceptually, this implies that strong s-wave pairing and superfluidity have now been established in a lattice potential, where the transport of atoms occurs by quantum mechanical tunneling and not by simple propagation. These observations were made for unitarity limited interactions on both sides of a Feshbach resonance. For larger lattice depths, the coherence was lost in a reversible manner, possibly due to a superfluid to insulator transition. Such strongly interacting fermions in an optical lattice can be used to study a new class of Hamiltonians with interband and atom-molecule couplings.

          Related collections

          Author and article information

          Journal
          03 July 2006
          2006-09-28
          Article
          10.1038/nature05224
          cond-mat/0607004
          eefe9460-a5fe-4e03-819a-60dcb6be6bc0
          History
          Custom metadata
          accepted for publication in Nature
          cond-mat.other

          Comments

          Comment on this article