22
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      On the information content of 2D and 3D descriptors for QSAR

      research-article
      1
      Journal of the Brazilian Chemical Society
      Sociedade Brasileira de Química
      ALMOND, cheminformatics, chemometrics, QSAR

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          To gain better understanding on the information content of two-dimensional (2D) vs. three-dimensional (3D) descriptor systems, we analyzed principal component analysis scores derived from 87 2D descriptors and 798 3D (ALMOND) variables on a set of 5998 compounds of medicinal chemistry interest. The information overlap between ALMOND and 2D-based descriptors, as modeled by the fraction of explained variance (r²) and by seven-groups cross-validation (q²) in a two PLS components model was 40%. Individual component analysis indicates that the first and second principal components from the 2D-descriptors are related to the first and third dimensions from the ALMOND PCA model. The first ALMOND component is explained (61%) by size-related descriptors, whereas the third component is marginally explained (25%) by hydrophobicity-related descriptors. Surprisingly, 2D-based hydrogen-bonding descriptors did not contribute significantly in this analysis. These results do not a priori justify the choice of one methodology over the other, when performing QSAR studies.

          Translated abstract

          Com o objetivo de melhor entender as informações paramétricas contidas em descritores bidimensionais (2D) e tridimensionais (3D), os escores de 87 descritores 2D e 798 variáveis 3D (ALMOND) obtidos de uma série de 5998 compostos de interesse em química medicinal, foram analisados através de análise de componentes principais. A fração de variância explicada (r²) e a validação cruzada (q²) para sete grupos, em duas componentes PLS, foram de 40%. Uma análise individual dos componentes, mostra que as duas primeiras PCs obtidas a partir dos descritores 2D estão relacionadas com a primeira e terceira PCs dos descritores 3D. A primeira componente 3D é explicada (61%) por descritores relacionados ao tamanho, enquanto que o conteúdo da terceira é essencialmente hidrofóbico, mas com pequena variância (25%). Surpreendentemente, descritores relacionados a ligações hidrogênio não contribuíram de forma significativa para a análise final. Estes resultados não permitem, a priori, a escolha de um método em detrimento de outro, quando da realização de estudos em QSAR.

          Related collections

          Most cited references52

          • Record: found
          • Abstract: not found
          • Article: not found

          ABC efflux pump-based resistance to chemotherapy drugs.

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Structural insights for the design of new PPARgamma partial agonists with high binding affinity and low transactivation activity.

            Peroxisome Proliferator-Activated Receptor γ (PPARγ) full agonists are molecules with powerful insulin-sensitizing action that are used as antidiabetic drugs. Unfortunately, these compounds also present various side effects. Recent results suggest that effective PPARγ agonists should show a low transactivation activity but a high binding affinity to inhibit phosphorylation at Ser273. We use several structure activity relationship studies of synthetic PPARγ agonists to explore the different binding features of full and partial PPARγ agonists with the aim of differentiating the features needed for binding and those needed for the transactivation activity of PPARγ. Our results suggest that effective partial agonists should have a hydrophobic moiety and an acceptor site with an appropriate conformation to interact with arm II and establish a hydrogen bond with Ser342 or an equivalent residue at arm III. Despite the fact that interactions with arm I increase the binding affinity, this region should be avoided in order to not increase the transactivation activity of potential PPARγ partial agonists.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The importance of protonation and tautomerization in relative binding affinity prediction: a comparison of AMBER TI and Schrödinger FEP.

              In drug discovery, protonation states and tautomerization are easily overlooked. Through a Merck-Rutgers collaboration, this paper re-examined the initial settings and preparations for the Thermodynamic Integration (TI) calculation in AMBER Free-Energy Workflows, demonstrating the value of careful consideration of ligand protonation and tautomer state. Finally, promising results comparing AMBER TI and Schrödinger FEP+ are shown that should encourage others to explore the value of TI in routine Structure-based Drug Design.
                Bookmark

                Author and article information

                Contributors
                Role: ND
                Journal
                jbchs
                Journal of the Brazilian Chemical Society
                J. Braz. Chem. Soc.
                Sociedade Brasileira de Química (São Paulo )
                1678-4790
                November 2002
                : 13
                : 6
                : 811-815
                Affiliations
                [1 ] University of New Mexico
                Article
                S0103-50532002000600013
                10.1590/S0103-50532002000600013
                ef04d19f-3314-4f0c-bbed-ea60fb5508c2

                http://creativecommons.org/licenses/by/4.0/

                History
                Product

                SciELO Brazil

                Self URI (journal page): http://www.scielo.br/scielo.php?script=sci_serial&pid=0103-5053&lng=en
                Categories
                CHEMISTRY, MULTIDISCIPLINARY

                General chemistry
                ALMOND,cheminformatics,chemometrics,QSAR
                General chemistry
                ALMOND, cheminformatics, chemometrics, QSAR

                Comments

                Comment on this article