15
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      The neural basis of homeostatic and anticipatory thirst

      ,
      Nature Reviews Nephrology
      Springer Nature

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Water intake is one of the most basic physiological responses and is essential to sustain life. The perception of thirst has a critical role in controlling body fluid homeostasis and if neglected or dysregulated can lead to life-threatening pathologies. Clear evidence suggests that the perception of thirst occurs in higher-order centres, such as the anterior cingulate cortex (ACC) and insular cortex (IC), which receive information from midline thalamic relay nuclei. Multiple brain regions, notably circumventricular organs such as the organum vasculosum lamina terminalis (OVLT) and subfornical organ (SFO), monitor changes in blood osmolality, solute load and hormone circulation and are thought to orchestrate appropriate responses to maintain extracellular fluid near ideal set points by engaging the medial thalamic-ACC/IC network. Thirst has long been thought of as a negative homeostatic feedback response to increases in blood solute concentration or decreases in blood volume. However, emerging evidence suggests a clear role for thirst as a feedforward adaptive anticipatory response that precedes physiological challenges. These anticipatory responses are promoted by rises in core body temperature, food intake (prandial) and signals from the circadian clock. Feedforward signals are also important mediators of satiety, inhibiting thirst well before the physiological state is restored by fluid ingestion. In this Review, we discuss the importance of thirst for body fluid balance and outline our current understanding of the neural mechanisms that underlie the various types of homeostatic and anticipatory thirst.

          Related collections

          Most cited references167

          • Record: found
          • Abstract: found
          • Article: not found

          Interoception: the sense of the physiological condition of the body.

          Converging evidence indicates that primates have a distinct cortical image of homeostatic afferent activity that reflects all aspects of the physiological condition of all tissues of the body. This interoceptive system, associated with autonomic motor control, is distinct from the exteroceptive system (cutaneous mechanoreception and proprioception) that guides somatic motor activity. The primary interoceptive representation in the dorsal posterior insula engenders distinct highly resolved feelings from the body that include pain, temperature, itch, sensual touch, muscular and visceral sensations, vasomotor activity, hunger, thirst, and 'air hunger'. In humans, a meta-representation of the primary interoceptive activity is engendered in the right anterior insula, which seems to provide the basis for the subjective image of the material self as a feeling (sentient) entity, that is, emotional awareness.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Suprachiasmatic nucleus in the mouse: retinal innervation, intrinsic organization and efferent projections.

            The suprachiasmatic nucleus (SCN) is the principal circadian pacemaker of the mammalian circadian timing system. The SCN is composed of two anatomically and functionally distinct subdivisions, designated core and shell, which can be distinguished on the basis of their chemoarchitecture and connections in the rat. In the present study, we examine the intrinsic organization and the afferent and efferent connections of the mouse SCN using immunocytochemistry and ocular injections of cholera toxin. Neurons of the SCN shell contain GABA, calbindin (CALB), arginine vasopressin (AVP), angiotensin II (AII) and met-enkephalin (mENK), and receive input from galanin (GAL) and vasoactive intestinal polypeptide (VIP) immunoreactive fibers. Neurons of the SCN core synthesize GABA, CALB, VIP, calretinin (CALR), gastrin releasing peptide (GRP), and neurotensin (NT), and receive input from the retina and from fibers that contain neuropeptide Y (NPY) and 5-hydroxytryptamine (5HT). Fibers projecting from SCN neurons that are immunoreactive for AVP and VIP exhibit a characteristic morphology, and project to the lateral septum, a series of medial hypothalamic areas extending from the preoptic to the posterior hypothalamic area and to the paraventricular thalamic nucleus. The organization of the mouse SCN, and its connections, are similar to that in other mammalian species.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              A new view of pain as a homeostatic emotion.

              Pain is conventionally viewed as a pattern of convergent activity within the somatosensory system that represents the exteroceptive sense of touch. Accumulating functional, anatomical and imaging findings indicate that pain is generated by specific sensory channels that ascend in a central homeostatic afferent pathway. Phylogenetically new thalamocortical projections in primates provide a sensory image of the physiological condition of the body and, in addition, direct activation of limbic motor cortex. These findings indicate that the human feeling of pain is both a distinct sensation and a motivation - that is, a specific emotion that reflects homeostatic behavioral drive, similar to temperature, itch, hunger and thirst.
                Bookmark

                Author and article information

                Journal
                Nature Reviews Nephrology
                Nat Rev Nephrol
                Springer Nature
                1759-5061
                1759-507X
                November 13 2017
                November 13 2017
                :
                :
                Article
                10.1038/nrneph.2017.149
                29129925
                ef0a57b1-d132-4f08-8bc8-869f3708ff5e
                © 2017
                History

                Comments

                Comment on this article