19
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Merely two mutations switch a DNA-hydrolyzing deoxyribozyme from heterobimetallic (Zn2+/Mn2+) to monometallic (Zn2+-only) behavior

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references24

          • Record: found
          • Abstract: found
          • Article: not found

          Directed evolution of nucleic acid enzymes.

          Just as Darwinian evolution in nature has led to the development of many sophisticated enzymes, Darwinian evolution in vitro has proven to be a powerful approach for obtaining similar results in the laboratory. This review focuses on the development of nucleic acid enzymes starting from a population of random-sequence RNA or DNA molecules. In order to illustrate the principles and practice of in vitro evolution, two especially well-studied categories of catalytic nucleic acid are considered: RNA enzymes that catalyze the template-directed ligation of RNA and DNA enzymes that catalyze the cleavage of RNA. The former reaction, which involves attack of a 2'- or 3'-hydroxyl on the alpha-phosphate of a 5'-triphosphate, is more difficult. It requires a comparatively larger catalytic motif, containing more nucleotides than can be sampled exhaustively within a starting population of random-sequence RNAs. The latter reaction involves deprotonation of the 2'-hydroxyl adjacent to the cleavage site, resulting in cleaved products that bear a 2',3'-cyclic phosphate and 5'-hydroxyl. The difficulty of this reaction, and therefore the complexity of the corresponding DNA enzyme, depends on whether a catalytic cofactor, such as a divalent metal cation or small molecule, is present in the reaction mixture.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Binuclear Metallohydrolases.

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The time required for water attack at the phosphorus atom of simple phosphodiesters and of DNA.

              Phosphodiester linkages, including those that join the nucleotides of DNA, are highly resistant to spontaneous hydrolysis. The rate of water attack at the phosphorus atom of phosphodiesters is known only as an upper limit, based on the hydrolysis of the dimethyl phosphate anion. That reaction was found to proceed at least 99% by C-O cleavage, at a rate suggesting an upper limit of 10(-15) s(-1) for P-O cleavage of phosphodiester anions at 25 degrees C. To evaluate the rate enhancement produced by P-O cleaving phosphodiesterases such as staphylococcal nuclease, we decided to establish the actual value of the rate constant for P-O cleavage of a simple phosphodiester anion. In dineopentyl phosphate, C-O cleavage is sterically precluded so that hydrolysis occurs only by P-O cleavage. Measurements at elevated temperatures indicate that the dineopentyl phosphate anion undergoes hydrolysis in water with a t(1/2) of 30,000,000 years at 25 degrees C, furnishing an indication of the resistance of the internucleotide linkages of DNA to water attack at phosphorus. These results imply that staphylococcal nuclease (k(cat) = 95 s(-1)) enhances the rate of phosphodiester hydrolysis by a factor of approximately 10(17). In alkaline solution, thymidylyl-3'-5'-thymidine (TpT) has been reported to decompose 10(5)-fold more rapidly than does dineopentyl phosphate. We find however that TpT and thymidine decompose at similar rates and with similar activation parameters, to a similar set of products, at pH 7 and in 1 M KOH. We infer that the decomposition of TpT is initiated by the breakdown of thymidine, not by phosphodiester hydrolysis.
                Bookmark

                Author and article information

                Journal
                CHCOFS
                Chem. Commun.
                Chem. Commun.
                Royal Society of Chemistry (RSC)
                1359-7345
                1364-548X
                2011
                2011
                : 47
                : 6
                : 1749-1751
                Article
                10.1039/C0CC04575F
                ef10af5e-ac3d-4ef8-9033-8b19501c1ef4
                © 2011
                History

                Comments

                Comment on this article