6
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Overexpression of PLIN1 Promotes Lipid Metabolism in Bovine Adipocytes

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Simple Summary

          In bovine preadipocytes, the overexpression of the PLIN1 gene promotes the expression of FASN, PPARγ, ACC, LPL, FABP4, DGAT2, and C/EBPβ at the mRNA level, inhibiting the expression of fat metabolism genes such as PLIN2 and ATGL. Furthermore, after overexpression of PLIN1, the oil red O-staining results showed that the number of lipid droplets (LDs) in fat cells, their volume and triglyceride content were increased. The elevation in triglyceride content indicates that PLIN1 can promote the accumulation of triglyceride in bovine preadipocytes and has an important regulatory role in fat metabolism. After transfection with the adenovirues Ad-PLIN1 and Ad-NC (empty virus), RNA-seq was used to analyze the differentially expressed genes in bovine preadipocytes. A total of 1923 differentially expressed genes were detected, and GO and KEGG signaling pathways were analyzed for differentially expressed genes.

          Abstract

          Perilipin 1 (PLIN1) is a protein encoded by the PLIN1 gene in eukaryotes. PLIN1 is a member of the PAT protein family, a family of proteins related to lipid droplet (LD) surface proteins. PLIN1 phosphorylation plays a vital role during fat metabolism of adipose tissue lipolysis and fat storage in adipocytes. However, to further explore the regulation of the PLIN1 gene on the proliferation, differentiation and lipid metabolism of bovine adipocytes. In this study, the mRNA expression of PLIN1, at day six, was the highest during bovine adipocyte differentiation. Moreover, PLIN1 can promote the proliferation and differentiation of preadipocytes in cattle. On the sixth day, after transfection with, and overexpression of, the PLIN1 gene in bovine preadipocytes via adenovirus, cell samples were collected, and transcriptome sequencing was performed. A total of 1923 differentially expressed genes were detected. Through GO and KEGG pathway analysis, the differentially expressed genes were established to be mainly enriched in the AMPK, Wnt, and PPAR signaling pathways related to fat proliferation and differentiation. In conclusion, at the transcriptional level, PLIN1 plays an important role in regulating fat proliferation and metabolism. Additionally, the sequencing results screened new differentially expressed genes related to fat metabolism, providing theoretical support for molecular breeding of Qinchuan beef cattle.

          Related collections

          Most cited references49

          • Record: found
          • Abstract: found
          • Article: not found

          Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method.

          The two most commonly used methods to analyze data from real-time, quantitative PCR experiments are absolute quantification and relative quantification. Absolute quantification determines the input copy number, usually by relating the PCR signal to a standard curve. Relative quantification relates the PCR signal of the target transcript in a treatment group to that of another sample such as an untreated control. The 2(-Delta Delta C(T)) method is a convenient way to analyze the relative changes in gene expression from real-time quantitative PCR experiments. The purpose of this report is to present the derivation, assumptions, and applications of the 2(-Delta Delta C(T)) method. In addition, we present the derivation and applications of two variations of the 2(-Delta Delta C(T)) method that may be useful in the analysis of real-time, quantitative PCR data. Copyright 2001 Elsevier Science (USA).
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Bioinformatics enrichment tools: paths toward the comprehensive functional analysis of large gene lists

            Functional analysis of large gene lists, derived in most cases from emerging high-throughput genomic, proteomic and bioinformatics scanning approaches, is still a challenging and daunting task. The gene-annotation enrichment analysis is a promising high-throughput strategy that increases the likelihood for investigators to identify biological processes most pertinent to their study. Approximately 68 bioinformatics enrichment tools that are currently available in the community are collected in this survey. Tools are uniquely categorized into three major classes, according to their underlying enrichment algorithms. The comprehensive collections, unique tool classifications and associated questions/issues will provide a more comprehensive and up-to-date view regarding the advantages, pitfalls and recent trends in a simpler tool-class level rather than by a tool-by-tool approach. Thus, the survey will help tool designers/developers and experienced end users understand the underlying algorithms and pertinent details of particular tool categories/tools, enabling them to make the best choices for their particular research interests.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              RNA-Seq: a revolutionary tool for transcriptomics.

              RNA-Seq is a recently developed approach to transcriptome profiling that uses deep-sequencing technologies. Studies using this method have already altered our view of the extent and complexity of eukaryotic transcriptomes. RNA-Seq also provides a far more precise measurement of levels of transcripts and their isoforms than other methods. This article describes the RNA-Seq approach, the challenges associated with its application, and the advances made so far in characterizing several eukaryote transcriptomes.
                Bookmark

                Author and article information

                Journal
                Animals (Basel)
                Animals (Basel)
                animals
                Animals : an Open Access Journal from MDPI
                MDPI
                2076-2615
                22 October 2020
                November 2020
                : 10
                : 11
                : 1944
                Affiliations
                [1 ]College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China; lishijun1990cn@ 123456163.com (S.L.); haiderraza110@ 123456nwafu.edu.cn (S.H.A.R.); zhao.chunping@ 123456foxmail.com (C.Z.); chenggong@ 123456nwafu.edu.cn (G.C.)
                [2 ]National Beef Cattle Improvement Center, Northwest A&F University, Yangling 712100, China
                Author notes
                [* ]Correspondence: zanlinsen@ 123456163.com ; Tel.: +86-29-8709-1923; Fax: +86-29-8709-2164
                [†]

                These authors contributed equally to this work.

                Author information
                https://orcid.org/0000-0002-0961-1911
                Article
                animals-10-01944
                10.3390/ani10111944
                7690407
                33105676
                ef1bcb56-2eb5-41ae-ac4e-2513dbb3e4a4
                © 2020 by the authors.

                Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( http://creativecommons.org/licenses/by/4.0/).

                History
                : 03 September 2020
                : 20 October 2020
                Categories
                Article

                cattle,plin1 gene,bovine adipocytes,adenovirus,rna-seq,differentially expressed genes

                Comments

                Comment on this article