2
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Current approaches in the grading and management of cytokine release syndrome after chimeric antigen receptor T-cell therapy

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          With immunotherapy innovations for cancer treatment, in particular chimeric antigen receptor (CAR) T cells, becoming more successful and prevalent, strategies to mitigate and manage their toxicities are required. Anti-CD19 CAR T-cell therapy has revolutionized the treatment of relapsed/refractory pediatric and adult acute lymphoblastic leukemia and refractory adult non-Hodgkin lymphoma, resulting in the expanded use of CAR T cells in multicenter trials and as US FDA-approved products. Cytokine release syndrome (CRS) and CAR-associated neurotoxicity, which can occur independently or concurrently with CRS, are two potentially life-threatening toxicities of CAR T-cell therapy. In this review, we will focus on describing the pathophysiology behind CRS, the proposed definitions of and grading systems for CRS, and innovative options for treating this potentially lethal systemic inflammatory condition.

          Related collections

          Most cited references 13

          • Record: found
          • Abstract: found
          • Article: not found

          Intent to treat leukemia remission by CD19CAR T cells of defined formulation and dose in children and young adults

          Publisher's Note: There is an [Related article:] Inside Blood Commentary on this article in this issue. Defined-composition manufacturing platform of CD19 CAR T cells contributes to >90% intent-to-treat complete remission rate. Uniformity of durable persistence of CAR T cells and mitigation of antigen escape are key aspects for further optimization. Transitioning CD19-directed chimeric antigen receptor (CAR) T cells from early-phase trials in relapsed patients to a viable therapeutic approach with predictable efficacy and low toxicity for broad application among patients with high unmet need is currently complicated by product heterogeneity resulting from transduction of undefined T-cell mixtures, variability of transgene expression, and terminal differentiation of cells at the end of culture. A phase 1 trial of 45 children and young adults with relapsed or refractory B-lineage acute lymphoblastic leukemia was conducted using a CD19 CAR product of defined CD4/CD8 composition, uniform CAR expression, and limited effector differentiation. Products meeting all defined specifications occurred in 93% of enrolled patients. The maximum tolerated dose was 10 6 CAR T cells per kg, and there were no deaths or instances of cerebral edema attributable to product toxicity. The overall intent-to-treat minimal residual disease–negative (MRD − ) remission rate for this phase 1 study was 89%. The MRD − remission rate was 93% in patients who received a CAR T-cell product and 100% in the subset of patients who received fludarabine and cyclophosphamide lymphodepletion. Twenty-three percent of patients developed reversible severe cytokine release syndrome and/or reversible severe neurotoxicity. These data demonstrate that manufacturing a defined-composition CD19 CAR T cell identifies an optimal cell dose with highly potent antitumor activity and a tolerable adverse effect profile in a cohort of patients with an otherwise poor prognosis. This trial was registered at www.clinicaltrials.gov as #NCT02028455.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Clinical significance of minimal residual disease in childhood acute lymphoblastic leukemia and its relationship to other prognostic factors: a Children's Oncology Group study.

            Minimal residual disease (MRD) is an important predictor of relapse in acute lymphoblastic leukemia (ALL), but its relationship to other prognostic variables has not been fully assessed. The Children's Oncology Group studied the prognostic impact of MRD measured by flow cytometry in the peripheral blood at day 8, and in end-induction (day 29) and end-consolidation marrows in 2143 children with precursor B-cell ALL (B-ALL). The presence of MRD in day-8 blood and day-29 marrow MRD was associated with shorter event-free survival (EFS) in all risk groups; even patients with 0.01% to 0.1% day-29 MRD had poor outcome compared with patients negative for MRD patients (59% +/- 5% vs 88% +/- 1% 5-year EFS). Presence of good prognostic markers TEL-AML1 or trisomies of chromosomes 4 and 10 still provided additional prognostic information, but not in National Cancer Institute high-risk (NCI HR) patients who were MRD(+). The few patients with detectable MRD at end of consolidation fared especially poorly, with only a 43% plus or minus 7% 5-year EFS. Day-29 marrow MRD was the most important prognostic variable in multi-variate analysis. The 12% of patients with all favorable risk factors, including NCI risk group, genetics, and absence of days 8 and 29 MRD, had a 97% plus or minus 1% 5-year EFS with nonintensive therapy. These studies are registered at www.clinicaltrials.gov as NCT00005585, NCT00005596, and NCT00005603.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Factors influencing survival after relapse from acute lymphoblastic leukemia: a Children's Oncology Group study.

               N Winick,  ,  Miranda M. Loh (2008)
              Despite great progress in curing childhood acute lymphoblastic leukemia (ALL), survival after relapse remains poor. We analyzed survival after relapse among 9585 pediatric patients enrolled on Children's Oncology Group clinical trials between 1988 and 2002. A total of 1961 patients (20.5%) experienced relapse at any site. The primary end point was survival. Patients were subcategorized by the site of relapse and timing of relapse from initial diagnosis. Time to relapse remains the strongest predictor of survival. Patients experiencing early relapse less than 18 months from initial diagnosis had a particularly poor outcome with a 5-year survival estimate of 21.0+/-1.8%. Standard risk patients who relapsed had improved survival compared with their higher risk counterparts; differences in survival for the two risk groups was most pronounced for patients relapsing after 18 months. Adjusting for both time and relapse site, multivariate analysis showed that age (10+ years) and the presence of central nervous system disease at diagnosis, male gender, and T-cell disease were significant predictors of inferior post-relapse survival. It can be noted that there was no difference in survival rates for relapsed patients in earlier vs later era trials. New therapeutic strategies are urgently needed for children with relapsed ALL and efforts should focus on discovering the biological pathways that mediate drug resistance.
                Bookmark

                Author and article information

                Journal
                Ther Clin Risk Manag
                Ther Clin Risk Manag
                Therapeutics and Clinical Risk Management
                Therapeutics and Clinical Risk Management
                Dove Medical Press
                1176-6336
                1178-203X
                2019
                28 February 2019
                : 15
                : 323-335
                Affiliations
                [1 ]Division of Pediatric Hematology/Oncology, Department of Pediatrics, University of Virginia, Charlottesville, VA, USA, dwl4q@ 123456virginia.edu
                [2 ]School of Medicine, University of Virginia, Charlottesville, VA, USA
                Author notes
                Correspondence: Daniel W Lee, Division of Pediatric Hematology/Oncology, Department of Pediatrics, University of Virginia, PO Box 800386, Charlottesville, VA 22908, USA, Tel +1 434 297 4289, Email dwl4q@ 123456virginia.edu
                Article
                tcrm-15-323
                10.2147/TCRM.S150524
                6400118
                © 2019 Riegler et al. This work is published and licensed by Dove Medical Press Limited

                The full terms of this license are available at https://www.dovepress.com/terms.php and incorporate the Creative Commons Attribution - Non Commercial (unported, v3.0) License ( http://creativecommons.org/licenses/by-nc/3.0/). By accessing the work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed.

                Categories
                Review

                Comments

                Comment on this article