4
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Monitoring daytime differences in moderate intensity exercise capacity using treadmill test and muscle dissection

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Summary

          There is growing interest in medicine and sports in uncovering exercise modifiers that enhance or limit exercise capacity. Here, we detail a protocol for testing the daytime effect on running capacity in mice using a moderate intensity treadmill effort test. Instructions for dissecting soleus, gastrocnemius plantaris, and quadriceps muscles for further analysis are provided as well. This experimental setup is optimized for addressing questions regarding the involvement of daytime and circadian clocks in regulating exercise capacity.

          For complete details on the use and execution of this protocol, please refer to Ezagouri et al. (2019).

          Graphical Abstract

          Highlights

          • Exercise capacity is influenced by the time of day

          • Protocol for determining moderate intensity exercise capacity using treadmill test

          • Instructions for muscle dissection

          Abstract

          There is growing interest in medicine and sports in uncovering exercise modifiers that enhance or limit exercise capacity. Here, we detail a protocol for testing the daytime effect on running capacity in mice using a moderate intensity treadmill effort test. Instructions for dissecting soleus, gastrocnemius plantaris, and quadriceps muscles for further analysis are provided as well. This experimental setup is optimized for addressing questions regarding the involvement of daytime and circadian clocks in regulating exercise capacity.

          Related collections

          Most cited references45

          • Record: found
          • Abstract: found
          • Article: not found

          Integrative biology of exercise.

          Exercise represents a major challenge to whole-body homeostasis provoking widespread perturbations in numerous cells, tissues, and organs that are caused by or are a response to the increased metabolic activity of contracting skeletal muscles. To meet this challenge, multiple integrated and often redundant responses operate to blunt the homeostatic threats generated by exercise-induced increases in muscle energy and oxygen demand. The application of molecular techniques to exercise biology has provided greater understanding of the multiplicity and complexity of cellular networks involved in exercise responses, and recent discoveries offer perspectives on the mechanisms by which muscle "communicates" with other organs and mediates the beneficial effects of exercise on health and performance.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            AMPK and PPARdelta agonists are exercise mimetics.

            The benefits of endurance exercise on general health make it desirable to identify orally active agents that would mimic or potentiate the effects of exercise to treat metabolic diseases. Although certain natural compounds, such as reseveratrol, have endurance-enhancing activities, their exact metabolic targets remain elusive. We therefore tested the effect of pathway-specific drugs on endurance capacities of mice in a treadmill running test. We found that PPARbeta/delta agonist and exercise training synergistically increase oxidative myofibers and running endurance in adult mice. Because training activates AMPK and PGC1alpha, we then tested whether the orally active AMPK agonist AICAR might be sufficient to overcome the exercise requirement. Unexpectedly, even in sedentary mice, 4 weeks of AICAR treatment alone induced metabolic genes and enhanced running endurance by 44%. These results demonstrate that AMPK-PPARdelta pathway can be targeted by orally active drugs to enhance training adaptation or even to increase endurance without exercise.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The mammalian circadian timing system: organization and coordination of central and peripheral clocks.

              Most physiology and behavior of mammalian organisms follow daily oscillations. These rhythmic processes are governed by environmental cues (e.g., fluctuations in light intensity and temperature), an internal circadian timing system, and the interaction between this timekeeping system and environmental signals. In mammals, the circadian timekeeping system has a complex architecture, composed of a central pacemaker in the brain's suprachiasmatic nuclei (SCN) and subsidiary clocks in nearly every body cell. The central clock is synchronized to geophysical time mainly via photic cues perceived by the retina and transmitted by electrical signals to SCN neurons. In turn, the SCN influences circadian physiology and behavior via neuronal and humoral cues and via the synchronization of local oscillators that are operative in the cells of most organs and tissues. Thus, some of the SCN output pathways serve as input pathways for peripheral tissues. Here we discuss knowledge acquired during the past few years on the complex structure and function of the mammalian circadian timing system.
                Bookmark

                Author and article information

                Contributors
                Journal
                STAR Protoc
                STAR Protoc
                STAR Protocols
                Elsevier
                2666-1667
                05 February 2021
                19 March 2021
                05 February 2021
                : 2
                : 1
                : 100331
                Affiliations
                [1 ]Department of Biomolecular Sciences, Weizmann Institute of Science, 7610001 Rehovot, Israel
                Author notes
                []Corresponding author gad.asher@ 123456weizmann.ac.il
                [2]

                These authors contributed equally

                [3]

                Technical contact

                [4]

                Lead contact

                Article
                S2666-1667(21)00038-1 100331
                10.1016/j.xpro.2021.100331
                7868630
                33598660
                ef320e30-b3d7-49f4-b6d1-c9ce135d53e1
                © 2021 The Author(s)

                This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

                History
                Categories
                Protocol

                metabolism,model organisms
                metabolism, model organisms

                Comments

                Comment on this article