22
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Effect of 100 Hz electroacupuncture on salivary immunoglobulin A and the autonomic nervous system

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          A previous study has reported that low-frequency (LF) electroacupuncture (EA) influences salivary secretory immunoglobulin A (sIgA) and the autonomic nervous system (ANS). The ANS is known to control the secretion volume of sIgA; however, the effect of high-frequency (HF) EA on salivary sIgA has not been determined. We investigated whether HF EA affects salivary sIgA levels and the ANS.

          Method

          Sixteen healthy subjects were randomly classified into two groups: a control group and an EA group. After a 5 min rest, subjects in the EA group received EA at 100 Hz bilaterally at LI4 and LI11 for 15 min before resting for a further 40 min post-stimulation. Subjects in the control group rested for a total of 60 min. Measurements of the ANS and sIgA levels in both groups were made before, immediately after, 20 min after, and 40 min after rest or 15 min EA treatment. HF and LF components of heart rate variability were analysed as markers of ANS function. LF/HF ratio and HF were taken as indices of sympathetic and parasympathetic nerve activity, respectively. Salivary protein concentrations and sIgA levels were determined by Bradford protein assay and ELISA, respectively.

          Results

          LF/HF ratio was significantly increased immediately after EA. HF was significantly increased at 20 min after EA and sIgA level was significantly increased at 40 min after EA. In addition, HF and salivary sIgA level were positively correlated with each another.

          Conclusions

          HF EA exerted sequential positive effects on sympathetic nerve activity, parasympathetic nerve activity, and salivary sIgA level (immediately and after 20 and 40 min, respectively). HF EA may increase salivary sIgA levels by influencing parasympathetic nerve activity.

          Related collections

          Most cited references25

          • Record: found
          • Abstract: found
          • Article: not found

          Trends in alternative medicine use in the United States, 1990-1997: results of a follow-up national survey.

          A prior national survey documented the high prevalence and costs of alternative medicine use in the United States in 1990. To document trends in alternative medicine use in the United States between 1990 and 1997. Nationally representative random household telephone surveys using comparable key questions were conducted in 1991 and 1997 measuring utilization in 1990 and 1997, respectively. A total of 1539 adults in 1991 and 2055 in 1997. Prevalence, estimated costs, and disclosure of alternative therapies to physicians. Use of at least 1 of 16 alternative therapies during the previous year increased from 33.8% in 1990 to 42.1% in 1997 (P < or = .001). The therapies increasing the most included herbal medicine, massage, megavitamins, self-help groups, folk remedies, energy healing, and homeopathy. The probability of users visiting an alternative medicine practitioner increased from 36.3% to 46.3% (P = .002). In both surveys alternative therapies were used most frequently for chronic conditions, including back problems, anxiety, depression, and headaches. There was no significant change in disclosure rates between the 2 survey years; 39.8% of alternative therapies were disclosed to physicians in 1990 vs 38.5% in 1997. The percentage of users paying entirely out-of-pocket for services provided by alternative medicine practitioners did not change significantly between 1990 (64.0%) and 1997 (58.3%) (P=.36). Extrapolations to the US population suggest a 47.3% increase in total visits to alternative medicine practitioners, from 427 million in 1990 to 629 million in 1997, thereby exceeding total visits to all US primary care physicians. An estimated 15 million adults in 1997 took prescription medications concurrently with herbal remedies and/or high-dose vitamins (18.4% of all prescription users). Estimated expenditures for alternative medicine professional services increased 45.2% between 1990 and 1997 and were conservatively estimated at $21.2 billion in 1997, with at least $12.2 billion paid out-of-pocket. This exceeds the 1997 out-of-pocket expenditures for all US hospitalizations. Total 1997 out-of-pocket expenditures relating to alternative therapies were conservatively estimated at $27.0 billion, which is comparable with the projected 1997 out-of-pocket expenditures for all US physician services. Alternative medicine use and expenditures increased substantially between 1990 and 1997, attributable primarily to an increase in the proportion of the population seeking alternative therapies, rather than increased visits per patient.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Neural mechanism underlying acupuncture analgesia.

            Acupuncture has been accepted to effectively treat chronic pain by inserting needles into the specific "acupuncture points" (acupoints) on the patient's body. During the last decades, our understanding of how the brain processes acupuncture analgesia has undergone considerable development. Acupuncture analgesia is manifested only when the intricate feeling (soreness, numbness, heaviness and distension) of acupuncture in patients occurs following acupuncture manipulation. Manual acupuncture (MA) is the insertion of an acupuncture needle into acupoint followed by the twisting of the needle up and down by hand. In MA, all types of afferent fibers (Abeta, Adelta and C) are activated. In electrical acupuncture (EA), a stimulating current via the inserted needle is delivered to acupoints. Electrical current intense enough to excite Abeta- and part of Adelta-fibers can induce an analgesic effect. Acupuncture signals ascend mainly through the spinal ventrolateral funiculus to the brain. Many brain nuclei composing a complicated network are involved in processing acupuncture analgesia, including the nucleus raphe magnus (NRM), periaqueductal grey (PAG), locus coeruleus, arcuate nucleus (Arc), preoptic area, nucleus submedius, habenular nucleus, accumbens nucleus, caudate nucleus, septal area, amygdale, etc. Acupuncture analgesia is essentially a manifestation of integrative processes at different levels in the CNS between afferent impulses from pain regions and impulses from acupoints. In the last decade, profound studies on neural mechanisms underlying acupuncture analgesia predominately focus on cellular and molecular substrate and functional brain imaging and have developed rapidly. Diverse signal molecules contribute to mediating acupuncture analgesia, such as opioid peptides (mu-, delta- and kappa-receptors), glutamate (NMDA and AMPA/KA receptors), 5-hydroxytryptamine, and cholecystokinin octapeptide. Among these, the opioid peptides and their receptors in Arc-PAG-NRM-spinal dorsal horn pathway play a pivotal role in mediating acupuncture analgesia. The release of opioid peptides evoked by electroacupuncture is frequency-dependent. EA at 2 and 100Hz produces release of enkephalin and dynorphin in the spinal cord, respectively. CCK-8 antagonizes acupuncture analgesia. The individual differences of acupuncture analgesia are associated with inherited genetic factors and the density of CCK receptors. The brain regions associated with acupuncture analgesia identified in animal experiments were confirmed and further explored in the human brain by means of functional imaging. EA analgesia is likely associated with its counter-regulation to spinal glial activation. PTX-sesntive Gi/o protein- and MAP kinase-mediated signal pathways as well as the downstream events NF-kappaB, c-fos and c-jun play important roles in EA analgesia.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Dopamine Mediates the Vagal Modulation of the Immune System by Electroacupuncture

              Previous anti-inflammatory strategies against sepsis, a leading cause of death in hospitals, had limited efficacy in clinical trials, in part because they targeted single cytokines and the experimental models failed to mimic clinical settings 1-3 . Neuronal networks represent physiological mechanisms selected by evolution to control inflammation that can be exploited for the treatment of inflammatory and infectious disorders 3 . Here, we report that sciatic nerve activation with electroacupuncture controls systemic inflammation and rescues mice from polymicrobial peritonitis. Electroacupuncture at the sciatic nerve controls systemic inflammation by inducing a vagal activation of DOPA decarboxylase leading to the production of dopamine in the adrenal medulla. Experimental models with adrenolectomized animals mimic clinical adrenal insufficiency 4 , increase the susceptibility to sepsis, and prevent the anti-inflammatory potential of electroacupuncture. Dopamine inhibits cytokine production via dopaminergic type-1 receptors. Dopaminergic D1-agonists suppress systemic inflammation and rescue mice from polymicrobial peritonitis in animals with adrenal insufficiency. Our results suggest a novel anti-inflammatory mechanism mediated by the sciatic and the vagus nerves modulating the production of catecholamines in the adrenal glands. From a pharmacological perspective, selective dopaminergic agonists mimic the anti-inflammatory potential of electroacupuncture and can provide therapeutic advantages to control inflammation in infectious and inflammatory disorders.
                Bookmark

                Author and article information

                Journal
                Acupunct Med
                Acupunct Med
                acupmed
                aim
                Acupuncture in Medicine
                BMJ Publishing Group (BMA House, Tavistock Square, London, WC1H 9JR )
                0964-5284
                1759-9873
                December 2015
                8 October 2015
                : 33
                : 6
                : 451-456
                Affiliations
                [1 ]Graduate School of Health Sciences, Teikyo Heisei University , Tokyo, Japan
                [2 ]Faculty of Health Care, Teikyo Heisei University , Tokyo, Japan
                [3 ]Research Institute of Oriental Medicine , Teikyo Heisei University, Tokyo, Japan
                Author notes
                [Correspondence to ] Professor Tatsuya Hisajima, Faculty of Health Care, Teikyo Heisei University, 2-51-4 Higashi-ikebukuro, Toshima-ku, Tokyo 170-8445, Japan; hisajimatatsuya@ 123456mac.com
                Article
                acupmed-2015-010784
                10.1136/acupmed-2015-010784
                4860969
                26449884
                ef4c0792-64ca-4d25-a374-17ed7f4dcc8b
                Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/

                This is an Open Access article distributed in accordance with the Creative Commons Attribution Non Commercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited and the use is non-commercial. See: http://creativecommons.org/licenses/by-nc/4.0/

                History
                : 19 September 2015
                Categories
                1506
                Original Paper
                Custom metadata
                unlocked

                Complementary & Alternative medicine
                Complementary & Alternative medicine

                Comments

                Comment on this article