10
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Mathematical and Computational Challenges in Population Biology and Ecosystems Science

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Related collections

          Most cited references70

          • Record: found
          • Abstract: not found
          • Article: not found

          Evolutionary games and spatial chaos

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            HIV-1 Dynamics in Vivo: Virion Clearance Rate, Infected Cell Life-Span, and Viral Generation Time

            A new mathematical model was used to analyze a detailed set of human immunodeficiency virus-type 1 (HIV-1) viral load data collected from five infected individuals after the administration of a potent inhibitor of HIV-1 protease. Productively infected cells were estimated to have, on average, a life-span of 2.2 days (half-life t 1/2 = 1.6 days), and plasma virions were estimated to have a mean life-span of 0.3 days (t 1/2 = 0.24 days). The estimated average total HIV-1 production was 10.3 x 10(9) virions per day, which is substantially greater than previous minimum estimates. The results also suggest that the minimum duration of the HIV-1 life cycle in vivo is 1.2 days on average, and that the average HIV-1 generation time--defined as the time from release of a virion until it infects another cell and causes the release of a new generation of viral particles--is 2.6 days. These findings on viral dynamics provide not only a kinetic picture of HIV-1 pathogenesis, but also theoretical principles to guide the development of treatment strategies.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              Some Ecological Consequences of a Computer Model of Forest Growth

                Bookmark

                Author and article information

                Journal
                Science
                Science
                American Association for the Advancement of Science (AAAS)
                0036-8075
                1095-9203
                January 17 1997
                January 17 1997
                : 275
                : 5298
                : 334-343
                Article
                10.1126/science.275.5298.334
                ef4e0944-a4aa-4a7f-a07c-df74cfd9e5c1
                © 1997
                History

                Comments

                Comment on this article