39
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      The Distinct Conformational Dynamics of K-Ras and H-Ras A59G

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Ras proteins regulate signaling cascades crucial for cell proliferation and differentiation by switching between GTP- and GDP-bound conformations. Distinct Ras isoforms have unique physiological functions with individual isoforms associated with different cancers and developmental diseases. Given the small structural differences among isoforms and mutants, it is currently unclear how these functional differences and aberrant properties arise. Here we investigate whether the subtle differences among isoforms and mutants are associated with detectable dynamical differences. Extensive molecular dynamics simulations reveal that wild-type K-Ras and mutant H-Ras A59G are intrinsically more dynamic than wild-type H-Ras. The crucial switch 1 and switch 2 regions along with loop 3, helix 3, and loop 7 contribute to this enhanced flexibility. Removing the gamma-phosphate of the bound GTP from the structure of A59G led to a spontaneous GTP-to-GDP conformational transition in a 20-ns unbiased simulation. The switch 1 and 2 regions exhibit enhanced flexibility and correlated motion when compared to non-transitioning wild-type H-Ras over a similar timeframe. Correlated motions between loop 3 and helix 5 of wild-type H-Ras are absent in the mutant A59G reflecting the enhanced dynamics of the loop 3 region. Taken together with earlier findings, these results suggest the existence of a lower energetic barrier between GTP and GDP states of the mutant. Molecular dynamics simulations combined with principal component analysis of available Ras crystallographic structures can be used to discriminate ligand- and sequence-based dynamic perturbations with potential functional implications. Furthermore, the identification of specific conformations associated with distinct Ras isoforms and mutants provides useful information for efforts that attempt to selectively interfere with the aberrant functions of these species.

          Author Summary

          The proto-oncogene Ras mediates signaling pathways controlling cell proliferation and development by cycling between active and inactive conformational states. Mutations that affect the ability to switch between states are associated with over 25% of human tumors. However, despite much effort, details of how these mutations affect the fidelity of activating conformational transitions remain unclear. Here we employ extensive molecular dynamics simulations combined with principal component analysis to investigate whether the subtle differences among functionally distinct isoforms and oncogenic mutants are associated with detectable dynamical differences. Our results reveal that wild-type K-Ras, the most prevalent isoform in a number of cancers, and mutant H-Ras A59G are intrinsically more dynamic than wild-type H-Ras. Furthermore, we have observed the first spontaneous GTP-to-GDP transition of H-Ras A59G during unbiased molecular dynamics simulation. These results indicate that key changes in sequence can lead to different dynamic properties that may be relevant for the unique physiological and aberrant functions of Ras isoforms and mutants. Furthermore, the current results shed further light on the conformational transition mechanism of this important molecular switch.

          Related collections

          Most cited references35

          • Record: found
          • Abstract: found
          • Article: not found

          Ras oncogenes: split personalities.

          Extensive research on the Ras proteins and their functions in cell physiology over the past 30 years has led to numerous insights that have revealed the involvement of Ras not only in tumorigenesis but also in many developmental disorders. Despite great strides in our understanding of the molecular and cellular mechanisms of action of the Ras proteins, the expanding roster of their downstream effectors and the complexity of the signalling cascades that they regulate indicate that much remains to be learnt.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            ras genes.

            M Barbacid (1987)
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Molecular switch for signal transduction: structural differences between active and inactive forms of protooncogenic ras proteins.

              Ras proteins participate as a molecular switch in the early steps of the signal transduction pathway that is associated with cell growth and differentiation. When the protein is in its GTP complexed form it is active in signal transduction, whereas it is inactive in its GDP complexed form. A comparison of eight three-dimensional structures of ras proteins in four different crystal lattices, five with a nonhydrolyzable GTP analog and three with GDP, reveals that the "on" and "off" states of the switch are distinguished by conformational differences that span a length of more than 40 A, and are induced by the gamma-phosphate. The most significant differences are localized in two regions: residues 30 to 38 (the switch I region) in the second loop and residues 60 to 76 (the switch II region) consisting of the fourth loop and the short alpha-helix that follows the loop. Both regions are highly exposed and form a continuous strip on the molecular surface most likely to be the recognition sites for the effector and receptor molecule(or molecules). The conformational differences also provide a structural basis for understanding the biological and biochemical changes of the proteins due to oncogenic mutations, autophosphorylation, and GTP hydrolysis, and for understanding the interactions with other proteins.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS Comput Biol
                plos
                ploscomp
                PLoS Computational Biology
                Public Library of Science (San Francisco, USA )
                1553-734X
                1553-7358
                September 2010
                September 2010
                9 September 2010
                : 6
                : 9
                : e1000922
                Affiliations
                [1 ]Department of Chemistry, University of Cambridge, Cambridge, United Kingdom
                [2 ]Bioinformatics Institute, Agency for Science, Technology and Research, Singapore
                [3 ]Department of Chemistry and Biochemistry, Center for Theoretical Biological Physics, University of California San Diego, La Jolla, California, United States of America
                [4 ]Howard Hughes Medical Institute, University of California San Diego, La Jolla, California, United States of America
                [5 ]Department of Integrative Biology and Pharmacology, University of Texas Health Science Center, Houston, Texas, United States of America
                [6 ]Department of Pharmacology, University of California San Diego, La Jolla, California, United States of America
                University of Houston, United States of America
                Author notes

                Conceived and designed the experiments: SL BJG AAG JAM. Performed the experiments: SL BJG. Analyzed the data: SL BJG. Contributed reagents/materials/analysis tools: BJG AAG GHG. Wrote the paper: SL BJG AAG JAM.

                Article
                10-PLCB-RA-2336R2
                10.1371/journal.pcbi.1000922
                2936511
                20838576
                ef5d205c-2c83-445d-bcd8-dd7cae0f6530
                Lukman et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
                History
                : 3 June 2010
                : 6 August 2010
                Page count
                Pages: 9
                Categories
                Research Article
                Biochemistry/Bioinformatics
                Biochemistry/Cell Signaling and Trafficking Structures
                Biochemistry/Theory and Simulation
                Biophysics/Theory and Simulation
                Computational Biology/Molecular Dynamics

                Quantitative & Systems biology
                Quantitative & Systems biology

                Comments

                Comment on this article