27
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Catchment to sea connection: Impacts of terrestrial run-off on benthic ecosystems in American Samoa

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Variation in water quality can directly affect the composition of benthic assemblages on coral reefs. Yet, few studies have directly quantified nutrient and suspended particulate matter (SPM) to examine their potential impacts on benthic community structure, especially around high oceanic islands. We assessed the spatio-temporal variation of nutrients and SPM across six sites in American Samoa over a 12-month period and used exploratory path analysis to relate dissolved inorganic nutrients, land use, and natural and anthropogenic drivers to benthic assemblages on adjacent shallow reefs. Multivariate analyses showed clear gradients in nutrient concentrations, sediment accumulation and composition, and benthic structure across watersheds. Instream nutrients and land uses positively influenced reef flat nutrient concentrations, while benthic assemblages were best predicted by wave exposure, runoff, stream phosphate and dissolved inorganic nitrogen loads. Identifying locality-specific drivers of water quality and benthic condition can support targeted management in American Samoa and in other high islands.

          Related collections

          Most cited references74

          • Record: found
          • Abstract: found
          • Article: not found

          A modified single solution method for the determination of phosphate in natural waters

          Analytica Chimica Acta, 27, 31-36
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Global warming transforms coral reef assemblages

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              A bacterial method for the nitrogen isotopic analysis of nitrate in seawater and freshwater.

              We report a new method for measurement of the isotopic composition of nitrate (NO3-) at the natural-abundance level in both seawater and freshwater. The method is based on the isotopic analysis of nitrous oxide (N20) generated from nitrate by denitrifying bacteria that lack N2O-reductase activity. The isotopic composition of both nitrogen and oxygen from nitrate are accessible in this way. In this first of two companion manuscripts, we describe the basic protocol and results for the nitrogen isotopes. The precision of the method is better than 0.2/1000 (1 SD) at concentrations of nitrate down to 1 microM, and the nitrogen isotopic differences among various standards and samples are accurately reproduced. For samples with 1 microM nitrate or more, the blank of the method is less than 10% of the signal size, and various approaches may reduce it further.
                Bookmark

                Author and article information

                Journal
                Marine Pollution Bulletin
                Marine Pollution Bulletin
                Elsevier BV
                0025326X
                August 2021
                August 2021
                : 169
                : 112530
                Article
                10.1016/j.marpolbul.2021.112530
                34087665
                ef612a66-99d1-4601-addc-977340d3c1ab
                © 2021

                https://www.elsevier.com/tdm/userlicense/1.0/

                http://www.elsevier.com/open-access/userlicense/1.0/

                https://doi.org/10.15223/policy-017

                https://doi.org/10.15223/policy-037

                https://doi.org/10.15223/policy-012

                https://doi.org/10.15223/policy-029

                https://doi.org/10.15223/policy-004

                History

                Comments

                Comment on this article