9
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      High density lipoprotein prevents oxidized low density lipoprotein-induced inhibition of endothelial nitric-oxide synthase localization and activation in caveolae.

      The Journal of Biological Chemistry
      Antigens, CD36, analysis, physiology, Cells, Cultured, Cholesterol, metabolism, Endothelium, Vascular, enzymology, Enzyme Activation, drug effects, Humans, Lipoproteins, LDL, pharmacology, toxicity, Membrane Proteins, Nitric Oxide, biosynthesis, Nitric Oxide Synthase, Nitric Oxide Synthase Type III, Receptors, Immunologic, Receptors, Lipoprotein, Receptors, Scavenger, Scavenger Receptors, Class B

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Oxidized LDL (oxLDL) depletes caveolae of cholesterol, resulting in the displacement of endothelial nitric-oxide synthase (eNOS) from caveolae and impaired eNOS activation. In the present study, we determined if the class B scavenger receptors, CD36 and SR-BI, are involved in regulating nitric-oxide synthase localization and function. We demonstrate that CD36 and SR-BI are expressed in endothelial cells, co-fractionate with caveolae, and co-immunoprecipitate with caveolin-1. Co-incubation of cells with 10 microgram/ml high density lipoprotein (HDL) prevented oxLDL-induced translocation of eNOS from caveolae and restored acetylcholine-induced nitric-oxide synthase stimulation. Acetylcholine caused eNOS activation in cells incubated with 10 microgram/ml oxLDL (10-15 thiobarbituric acid-reactive substances) and blocking antibodies to CD36, whereas cells treated with only oxLDL were unresponsive. Furthermore, CD36-blocking antibodies prevented oxLDL-induced redistribution of eNOS. SR-BI-blocking antibodies were used to demonstrate that the effects of HDL are mediate by SR-BI. HDL binding to SR-BI maintained the concentration of caveola-associated cholesterol by promoting the uptake of cholesterol esters, thereby preventing oxLDL-induced depletion of caveola cholesterol. We conclude that CD36 mediates the effects of oxLDL on caveola composition and eNOS activation. Furthermore, HDL prevents oxLDL from decreasing the capacity for eNOS activation by preserving the cholesterol concentration in caveolae and, thereby maintaining the subcellular location of eNOS.

          Related collections

          Author and article information

          Comments

          Comment on this article