21
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Dual Role of Topoisomerase II in Centromere Resolution and Aurora B Activity

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Chromosome segregation requires sister chromatid resolution. Condensins are essential for this process since they organize an axial structure where topoisomerase II can work. How sister chromatid separation is coordinated with chromosome condensation and decatenation activity remains unknown. We combined four-dimensional (4D) microscopy, RNA interference (RNAi), and biochemical analyses to show that topoisomerase II plays an essential role in this process. Either depletion of topoisomerase II or exposure to specific anti-topoisomerase II inhibitors causes centromere nondisjunction, associated with syntelic chromosome attachments. However, cells degrade cohesins and timely exit mitosis after satisfying the spindle assembly checkpoint. Moreover, in topoisomerase II–depleted cells, Aurora B and INCENP fail to transfer to the central spindle in late mitosis and remain tightly associated with centromeres of nondisjoined sister chromatids. Also, in topoisomerase II–depleted cells, Aurora B shows significantly reduced kinase activity both in S2 and HeLa cells. Codepletion of BubR1 in S2 cells restores Aurora B kinase activity, and consequently, most syntelic attachments are released. Taken together, our results support that topoisomerase II ensures proper sister chromatid separation through a direct role in centromere resolution and prevents incorrect microtubule–kinetochore attachments by allowing proper activation of Aurora B kinase.

          Author Summary

          Successful cell division requires that chromosomes are properly condensed and that each sister chromatid is self-contained by the time the sister pairs are segregated into separate daughter cells. It is also essential that the kinetochores at the centromeres of each pair of sister chromatids bind microtubules from opposite spindle poles. Topoisomerase II is a highly conserved enzyme that removes interlinks from DNA and is known to be essential to proper chromosome segregation during cell division. In this work, we have used state-of-the-art four-dimensional fluorescent microscopy to follow progression through mitosis in living cells depleted of topoisomerase II. We find that when the enzyme is absent, the two sister centromeres do not separate, and chromosomes missegregate. Moreover, the inappropriate centromere structure that results prevents the correct activation of the Aurora B kinase, which forms part of a regulatory mechanism that monitors correct segregation of chromosomes; as a result, cells exit mitosis abnormally.

          Abstract

          Analysis of cells lacking topoisomerase II reveals that the enzyme has an essential role in the segregation of chromosomes, and specifically centromeres, at anaphase-telophase of mitosis: it prevents non-disjunction and allows activation of the Aurora B kinase, so as to correct improper attachments between microtubules and the kinetochore.

          Related collections

          Most cited references55

          • Record: found
          • Abstract: found
          • Article: not found

          The small molecule Hesperadin reveals a role for Aurora B in correcting kinetochore–microtubule attachment and in maintaining the spindle assembly checkpoint

          The proper segregation of sister chromatids in mitosis depends on bipolar attachment of all chromosomes to the mitotic spindle. We have identified the small molecule Hesperadin as an inhibitor of chromosome alignment and segregation. Our data imply that Hesperadin causes this phenotype by inhibiting the function of the mitotic kinase Aurora B. Mammalian cells treated with Hesperadin enter anaphase in the presence of numerous monooriented chromosomes, many of which may have both sister kinetochores attached to one spindle pole (syntelic attachment). Hesperadin also causes cells arrested by taxol or monastrol to enter anaphase within <1 h, whereas cells in nocodazole stay arrested for 3–5 h. Together, our data suggest that Aurora B is required to generate unattached kinetochores on monooriented chromosomes, which in turn could promote bipolar attachment as well as maintain checkpoint signaling.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Chromosomal passengers: conducting cell division.

            Mitosis and meiosis are remarkable processes during which cells undergo profound changes in their structure and physiology. These events are orchestrated with a precision that is worthy of a classical symphony, with different activities being switched on and off at precise times and locations throughout the cell. One essential 'conductor' of this symphony is the chromosomal passenger complex (CPC), which comprises Aurora-B protein kinase, the inner centromere protein INCENP, survivin and borealin (also known as Dasra-B). Studies of the CPC are providing insights into its functions, which range from chromosome-microtubule interactions to sister chromatid cohesion to cytokinesis, and constitute one of the most dynamic areas of ongoing mitosis and meiosis research.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Use of double-stranded RNA interference in Drosophila cell lines to dissect signal transduction pathways.

              We demonstrate the efficacy of double-stranded RNA-mediated interference (RNAi) of gene expression in generating "knock-out" phenotypes for specific proteins in several Drosophila cell lines. We prove the applicability of this technique for studying signaling cascades by dissecting the well-characterized insulin signal transduction pathway. Specifically, we demonstrate that inhibiting the expression of the DSOR1 (mitogen-activated protein kinase kinase, MAPKK) prevents the activation of the downstream ERK-A (MAPK). In contrast, blocking ERK-A expression results in increased activation of DSOR1. We also show that Drosophila AKT (DAKT) activation depends on the insulin receptor substrate, CHICO (IRS1-4). Finally, we demonstrate that blocking the expression of Drosophila PTEN results in the activation of DAKT. In all cases, the interference of the biochemical cascade by RNAi is consistent with the known steps in the pathway. We extend this powerful technique to study two proteins, DSH3PX1 and Drosophila ACK (DACK). DSH3PX1 is an SH3, phox homology domain-containing protein, and DACK is homologous to the mammalian activated Cdc42 tyrosine kinase, ACK. Using RNAi, we demonstrate that DACK is upstream of DSH3PX1 phosphorylation, making DSH3PX1 an identified downstream target/substrate of ACK-like tyrosine kinases. These experiments highlight the usefulness of RNAi in dissecting complex biochemical signaling cascades and provide a highly effective method for determining the function of the identified genes arising from the Drosophila genome sequencing project.
                Bookmark

                Author and article information

                Contributors
                Role: Academic Editor
                Journal
                PLoS Biol
                pbio
                plbi
                plosbiol
                PLoS Biology
                Public Library of Science (San Francisco, USA )
                1544-9173
                1545-7885
                August 2008
                26 August 2008
                : 6
                : 8
                : e207
                Affiliations
                [1 ] Instituto de Biologia Molecular e Celular (IBMC), Porto, Portugal
                [2 ] Faculdade de Ciências da Saúde, Universidade Fernando Pessoa, Porto, Portugal
                [3 ] Laboratory of Cell and Molecular Biology, Faculdade de Medicina, Universidade do Porto, Porto, Portugal
                [4 ] Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto, Porto, Portugal
                Dana Farber Cancer Institute, United States of America
                Author notes
                * To whom correspondence should be addressed. E-mail: cesunkel@ 123456ibmc.up.pt
                Article
                07-PLBI-RA-4222R3 plbi-06-08-20
                10.1371/journal.pbio.0060207
                2525683
                18752348
                efa7ce4e-6125-4da8-9318-01e885519e2b
                Copyright: © 2008 Coelho et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
                History
                : 17 December 2007
                : 16 July 2008
                Page count
                Pages: 20
                Categories
                Research Article
                Cell Biology
                Custom metadata
                Coelho PA, Queiroz-Machado J, Carmo AM, Moutinho-Pereira S, Maiato H, et al. (2008) Dual role of Topoisomerase II in centromere resolution and Aurora B activity. PLoS Biol 6(8): e207. doi: 10.1371/journal.pbio.0060207

                Life sciences
                Life sciences

                Comments

                Comment on this article