13
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      A Voltage-Boosting Strategy Enabling a Low-Frequency, Flexible Electromagnetic Wave Absorption Device

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references33

          • Record: found
          • Abstract: found
          • Article: not found

          CoNi@SiO2 @TiO2 and CoNi@Air@TiO2 Microspheres with Strong Wideband Microwave Absorption.

          The synthesis of CoNi@SiO2 @TiO2 core-shell and CoNi@Air@TiO2 yolk-shell microspheres is reported for the first time. Owing to the magnetic-dielectric synergistic effect, the obtained CoNi@SiO2 @TiO2 microspheres exhibit outstanding microwave absorption performance with a maximum reflection loss of -58.2 dB and wide bandwidth of 8.1 GHz (8.0-16.1 GHz, < -10 dB).
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Broadband and tunable high-performance microwave absorption of an ultralight and highly compressible graphene foam.

            The broadband and tunable high-performance microwave absorption properties of an ultralight and highly compressible graphene foam (GF) are investigated. Simply via physical compression, the microwave absorption performance can be tuned. The qualified bandwidth coverage of 93.8% (60.5 GHz/64.5 GHz) is achieved for the GF under 90% compressive strain (1.0 mm thickness). This mainly because of the 3D conductive network.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              Microwave Absorption Enhancement and Complex Permittivity and Permeability of Fe Encapsulated within Carbon Nanotubes

                Bookmark

                Author and article information

                Journal
                Advanced Materials
                Adv. Mater.
                Wiley
                09359648
                April 2018
                April 2018
                March 07 2018
                : 30
                : 15
                : 1706343
                Affiliations
                [1 ]College of Material Science and Technology; Nanjing University of Aeronautics and Astronautics; Nanjing 210016 P. R. China
                [2 ]School of Materials Sciences and Engineering; Nanyang Technological University; 50 Nanyang Avenue 639798 Singapore
                [3 ]School of Materials Science and Engineering; Nanjing University of Science and Technology; Nanjing 210094 P. R. China
                [4 ]Beijing Synchrotron Radiation Facility; Institute of High Energy Physics; Chinese Academy of Sciences; Beijing 100049 P. R. China
                Article
                10.1002/adma.201706343
                29512210
                efad1aa6-f2e3-4047-afe6-e056b58186e7
                © 2018

                http://doi.wiley.com/10.1002/tdm_license_1.1

                http://onlinelibrary.wiley.com/termsAndConditions#vor

                History

                Comments

                Comment on this article