17
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Infectious diseases and translational research

      research-article

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          In terms of medicine, translational research refers to any research that can be applied to enhance health or well-being, but it does not necessarily take the results into practice. In this review, a few selected examples of infectious disease translational research will be discussed to illustrate the importance of this field.

          Related collections

          Most cited references60

          • Record: found
          • Abstract: found
          • Article: not found

          Human Infection with a Novel Avian-Origin Influenza A (H7N9) Virus

          New England Journal of Medicine, 368(20), 1888-1897
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The potential and challenges of nanopore sequencing.

            A nanopore-based device provides single-molecule detection and analytical capabilities that are achieved by electrophoretically driving molecules in solution through a nano-scale pore. The nanopore provides a highly confined space within which single nucleic acid polymers can be analyzed at high throughput by one of a variety of means, and the perfect processivity that can be enforced in a narrow pore ensures that the native order of the nucleobases in a polynucleotide is reflected in the sequence of signals that is detected. Kilobase length polymers (single-stranded genomic DNA or RNA) or small molecules (e.g., nucleosides) can be identified and characterized without amplification or labeling, a unique analytical capability that makes inexpensive, rapid DNA sequencing a possibility. Further research and development to overcome current challenges to nanopore identification of each successive nucleotide in a DNA strand offers the prospect of 'third generation' instruments that will sequence a diploid mammalian genome for approximately $1,000 in approximately 24 h.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Continuous base identification for single-molecule nanopore DNA sequencing.

              A single-molecule method for sequencing DNA that does not require fluorescent labelling could reduce costs and increase sequencing speeds. An exonuclease enzyme might be used to cleave individual nucleotide molecules from the DNA, and when coupled to an appropriate detection system, these nucleotides could be identified in the correct order. Here, we show that a protein nanopore with a covalently attached adapter molecule can continuously identify unlabelled nucleoside 5'-monophosphate molecules with accuracies averaging 99.8%. Methylated cytosine can also be distinguished from the four standard DNA bases: guanine, adenine, thymine and cytosine. The operating conditions are compatible with the exonuclease, and the kinetic data show that the nucleotides have a high probability of translocation through the nanopore and, therefore, of not being registered twice. This highly accurate tool is suitable for integration into a system for sequencing nucleic acids and for analysing epigenetic modifications.
                Bookmark

                Author and article information

                Contributors
                Journal
                Infectious Diseases and Translational Medicine
                Infect. Dis. Transl. Med.
                Infect. Dis. Transl. Med.
                International Biological and Medical Journals Publishing House Co., Limited (Room E16, 3/f, Yongda Commercial Building, No.97, Bonham Stand (Sheung Wan), HongKong )
                2411-2917
                30 June 2015
                30 March 2015
                : 1
                : 1
                : 16-22
                Affiliations
                From the State Key Laboratory of Pathogen and Biosecurity, Beijing Key Laboratory of POCT for Biological Emergence and Clinics, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China. Address: Beijing Institute of Microbiology and Epidemiology, No. 20, Dongdajie, Fengtai District, Beijing 100071, China
                Article
                10.11979/idtm.201501006
                efb12a35-06b4-4146-88e0-929795e06a6d

                This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 Unported License. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

                Page count
                Figures: 0, Tables: 0, References: 78, Pages: 7
                Product
                Categories
                Review

                Medicine,Infectious disease & Microbiology
                Infectious diseases,Translational research
                Medicine, Infectious disease & Microbiology
                Infectious diseases, Translational research

                Comments

                Comment on this article