+1 Recommend
0 collections
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Recent Advances of Intraocular Lens Materials and Surface Modification in Cataract Surgery


      Read this article at

          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.


          Advances in cataract surgery have increased the demand for intraocular lens (IOL) materials. At present, the progress of IOL materials mainly contains further improving biocompatibility, providing better visual quality and adjustable ability, reducing surgical incision, as well as dealing with complications such as posterior capsular opacification (PCO) and ophthalmitis. The purpose of this review is to describe the research progress of relevant IOL materials classified according to different clinical purposes. The innovation of IOL materials is often based on the common IOL materials on the market, such as silicon and acrylate. Special properties and functions are obtained by adding extra polymers or surface modification. Most of these studies have not yet been commercialized, which requires a large number of clinical trials. But they provide valuable thoughts for the optimization of the IOL function.

          Related collections

          Most cited references148

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Causes of blindness and vision impairment in 2020 and trends over 30 years, and prevalence of avoidable blindness in relation to VISION 2020: the Right to Sight: an analysis for the Global Burden of Disease Study

          Summary Background Many causes of vision impairment can be prevented or treated. With an ageing global population, the demands for eye health services are increasing. We estimated the prevalence and relative contribution of avoidable causes of blindness and vision impairment globally from 1990 to 2020. We aimed to compare the results with the World Health Assembly Global Action Plan (WHA GAP) target of a 25% global reduction from 2010 to 2019 in avoidable vision impairment, defined as cataract and undercorrected refractive error. Methods We did a systematic review and meta-analysis of population-based surveys of eye disease from January, 1980, to October, 2018. We fitted hierarchical models to estimate prevalence (with 95% uncertainty intervals [UIs]) of moderate and severe vision impairment (MSVI; presenting visual acuity from <6/18 to 3/60) and blindness (<3/60 or less than 10° visual field around central fixation) by cause, age, region, and year. Because of data sparsity at younger ages, our analysis focused on adults aged 50 years and older. Findings Global crude prevalence of avoidable vision impairment and blindness in adults aged 50 years and older did not change between 2010 and 2019 (percentage change −0·2% [95% UI −1·5 to 1·0]; 2019 prevalence 9·58 cases per 1000 people [95% IU 8·51 to 10·8], 2010 prevalence 96·0 cases per 1000 people [86·0 to 107·0]). Age-standardised prevalence of avoidable blindness decreased by −15·4% [–16·8 to −14·3], while avoidable MSVI showed no change (0·5% [–0·8 to 1·6]). However, the number of cases increased for both avoidable blindness (10·8% [8·9 to 12·4]) and MSVI (31·5% [30·0 to 33·1]). The leading global causes of blindness in those aged 50 years and older in 2020 were cataract (15·2 million cases [9% IU 12·7–18·0]), followed by glaucoma (3·6 million cases [2·8–4·4]), undercorrected refractive error (2·3 million cases [1·8–2·8]), age-related macular degeneration (1·8 million cases [1·3–2·4]), and diabetic retinopathy (0·86 million cases [0·59–1·23]). Leading causes of MSVI were undercorrected refractive error (86·1 million cases [74·2–101·0]) and cataract (78·8 million cases [67·2–91·4]). Interpretation Results suggest eye care services contributed to the observed reduction of age-standardised rates of avoidable blindness but not of MSVI, and that the target in an ageing global population was not reached. Funding Brien Holden Vision Institute, Fondation Théa, The Fred Hollows Foundation, Bill & Melinda Gates Foundation, Lions Clubs International Foundation, Sightsavers International, and University of Heidelberg.
            • Record: found
            • Abstract: found
            • Article: not found

            Ageing and vision: structure, stability and function of lens crystallins.

            The alpha-, beta- and gamma-crystallins are the major protein components of the vertebrate eye lens, alpha-crystallin as a molecular chaperone as well as a structural protein, beta- and gamma-crystallins as structural proteins. For the lens to be able to retain life-long transparency in the absence of protein turnover, the crystallins must meet not only the requirement of solubility associated with high cellular concentration but that of longevity as well. For proteins, longevity is commonly assumed to be correlated with long-term retention of native structure, which in turn can be due to inherent thermodynamic stability, efficient capture and refolding of non-native protein by chaperones, or a combination of both. Understanding how the specific interactions that confer intrinsic stability of the protein fold are combined with the stabilizing effect of protein assembly, and how the non-specific interactions and associations of the assemblies enable the generation of highly concentrated solutions, is thus of importance to understand the loss of transparency of the lens with age. Post-translational modification can have a major effect on protein stability but an emerging theme of the few studies of the effect of post-translational modification of the crystallins is one of solubility and assembly. Here we review the structure, assembly, interactions, stability and post-translational modifications of the crystallins, not only in isolation but also as part of a multi-component system. The available data are discussed in the context of the establishment, the maintenance and finally, with age, the loss of transparency of the lens. Understanding the structural basis of protein stability and interactions in the healthy eye lens is the route to solve the enormous medical and economical problem of cataract.
              • Record: found
              • Abstract: found
              • Article: not found

              Posterior capsular opacification: a problem reduced but not yet eradicated.

              Posterior capsular opacification (PCO) is the most frequent complication of cataract surgery. Advances in surgical techniques, intraocular lens materials, and designs have reduced the PCO rate, but it is still a significant problem. The only effective treatment for PCO, Nd:YAG laser capsulotomy carries vision-related complications and risks and puts a significant financial burden on the health care system. This review contains current knowledge about the mechanisms of PCO development. Posterior capsular opacification is caused mainly by remnant lens epithelial cell proliferation and migration, epithelial-mesenchymal transition, collagen deposition, and lens fiber generation. All of these processes are influenced by cytokines, growth factors, and extracellular matrix proteins. We also describe advances and improvements in surgical techniques, intraocular lens materials, and the designs and use of therapeutic agents leading to safe, effective, and less expensive strategies to eradicate PCO.

                Author and article information

                Front Bioeng Biotechnol
                Front Bioeng Biotechnol
                Front. Bioeng. Biotechnol.
                Frontiers in Bioengineering and Biotechnology
                Frontiers Media S.A.
                08 June 2022
                : 10
                : 913383
                Eye Center of the Second Affiliated Hospital , Medical College of Zhejiang University , Hangzhou, China
                Author notes

                Edited by: Jianxun Ding, Changchun Institute of Applied Chemistry (CAS), China

                Reviewed by: Di Huang, Massachusetts Eye and Ear Infirmary and Harvard Medical School, United States

                Liangju Kuang, Harvard Medical School, United States

                Quankui Lin, Wenzhou Medical University, China

                *Correspondence: Ke Yao, xlren@ 123456zju.edu.cn
                [ † ]

                These authors have contributed equally to this work and share first authorship

                This article was submitted to Biomaterials, a section of the journal Frontiers in Bioengineering and Biotechnology

                Copyright © 2022 Luo, Wang, Chen, Xu, Yin and Yao.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                : 05 April 2022
                : 23 May 2022
                Funded by: National Natural Science Foundation of China , doi 10.13039/501100001809;
                Award ID: 82070939 81870641
                Funded by: National Key Research and Development Program of China , doi 10.13039/501100012166;
                Award ID: 2018YFC1106104
                Bioengineering and Biotechnology

                biomaterials,intraocular lens,surface modification,biocompatibility,posterior capsular opacification


                Comment on this article