67
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Antibody tests for identification of current and past infection with SARS‐CoV‐2

      systematic-review

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          The severe acute respiratory syndrome coronavirus 2 (SARS‐CoV‐2) virus and resulting COVID‐19 pandemic present important diagnostic challenges. Several diagnostic strategies are available to identify current infection, rule out infection, identify people in need of care escalation, or to test for past infection and immune response. Serology tests to detect the presence of antibodies to SARS‐CoV‐2 aim to identify previous SARS‐CoV‐2 infection, and may help to confirm the presence of current infection.

          Objectives

          To assess the diagnostic accuracy of antibody tests to determine if a person presenting in the community or in primary or secondary care has SARS‐CoV‐2 infection, or has previously had SARS‐CoV‐2 infection, and the accuracy of antibody tests for use in seroprevalence surveys.

          Search methods

          We undertook electronic searches in the Cochrane COVID‐19 Study Register and the COVID‐19 Living Evidence Database from the University of Bern, which is updated daily with published articles from PubMed and Embase and with preprints from medRxiv and bioRxiv. In addition, we checked repositories of COVID‐19 publications. We did not apply any language restrictions. We conducted searches for this review iteration up to 27 April 2020.

          Selection criteria

          We included test accuracy studies of any design that evaluated antibody tests (including enzyme‐linked immunosorbent assays, chemiluminescence immunoassays, and lateral flow assays) in people suspected of current or previous SARS‐CoV‐2 infection, or where tests were used to screen for infection. We also included studies of people either known to have, or not to have SARS‐CoV‐2 infection. We included all reference standards to define the presence or absence of SARS‐CoV‐2 (including reverse transcription polymerase chain reaction tests (RT‐PCR) and clinical diagnostic criteria).

          Data collection and analysis

          We assessed possible bias and applicability of the studies using the QUADAS‐2 tool. We extracted 2x2 contingency table data and present sensitivity and specificity for each antibody (or combination of antibodies) using paired forest plots. We pooled data using random‐effects logistic regression where appropriate, stratifying by time since post‐symptom onset. We tabulated available data by test manufacturer. We have presented uncertainty in estimates of sensitivity and specificity using 95% confidence intervals (CIs).

          Main results

          We included 57 publications reporting on a total of 54 study cohorts with 15,976 samples, of which 8526 were from cases of SARS‐CoV‐2 infection. Studies were conducted in Asia (n = 38), Europe (n = 15), and the USA and China (n = 1). We identified data from 25 commercial tests and numerous in‐house assays, a small fraction of the 279 antibody assays listed by the Foundation for Innovative Diagnostics. More than half (n = 28) of the studies included were only available as preprints.

          We had concerns about risk of bias and applicability. Common issues were use of multi‐group designs (n = 29), inclusion of only COVID‐19 cases (n = 19), lack of blinding of the index test (n = 49) and reference standard (n = 29), differential verification (n = 22), and the lack of clarity about participant numbers, characteristics and study exclusions (n = 47). Most studies (n = 44) only included people hospitalised due to suspected or confirmed COVID‐19 infection. There were no studies exclusively in asymptomatic participants. Two‐thirds of the studies (n = 33) defined COVID‐19 cases based on RT‐PCR results alone, ignoring the potential for false‐negative RT‐PCR results. We observed evidence of selective publication of study findings through omission of the identity of tests (n = 5).

          We observed substantial heterogeneity in sensitivities of IgA, IgM and IgG antibodies, or combinations thereof, for results aggregated across different time periods post‐symptom onset (range 0% to 100% for all target antibodies). We thus based the main results of the review on the 38 studies that stratified results by time since symptom onset. The numbers of individuals contributing data within each study each week are small and are usually not based on tracking the same groups of patients over time.

          Pooled results for IgG, IgM, IgA, total antibodies and IgG/IgM all showed low sensitivity during the first week since onset of symptoms (all less than 30.1%), rising in the second week and reaching their highest values in the third week. The combination of IgG/IgM had a sensitivity of 30.1% (95% CI 21.4 to 40.7) for 1 to 7 days, 72.2% (95% CI 63.5 to 79.5) for 8 to 14 days, 91.4% (95% CI 87.0 to 94.4) for 15 to 21 days. Estimates of accuracy beyond three weeks are based on smaller sample sizes and fewer studies. For 21 to 35 days, pooled sensitivities for IgG/IgM were 96.0% (95% CI 90.6 to 98.3). There are insufficient studies to estimate sensitivity of tests beyond 35 days post‐symptom onset. Summary specificities (provided in 35 studies) exceeded 98% for all target antibodies with confidence intervals no more than 2 percentage points wide. False‐positive results were more common where COVID‐19 had been suspected and ruled out, but numbers were small and the difference was within the range expected by chance.

          Assuming a prevalence of 50%, a value considered possible in healthcare workers who have suffered respiratory symptoms, we would anticipate that 43 (28 to 65) would be missed and 7 (3 to 14) would be falsely positive in 1000 people undergoing IgG/IgM testing at days 15 to 21 post‐symptom onset. At a prevalence of 20%, a likely value in surveys in high‐risk settings, 17 (11 to 26) would be missed per 1000 people tested and 10 (5 to 22) would be falsely positive. At a lower prevalence of 5%, a likely value in national surveys, 4 (3 to 7) would be missed per 1000 tested, and 12 (6 to 27) would be falsely positive.

          Analyses showed small differences in sensitivity between assay type, but methodological concerns and sparse data prevent comparisons between test brands.

          Authors' conclusions

          The sensitivity of antibody tests is too low in the first week since symptom onset to have a primary role for the diagnosis of COVID‐19, but they may still have a role complementing other testing in individuals presenting later, when RT‐PCR tests are negative, or are not done. Antibody tests are likely to have a useful role for detecting previous SARS‐CoV‐2 infection if used 15 or more days after the onset of symptoms. However, the duration of antibody rises is currently unknown, and we found very little data beyond 35 days post‐symptom onset. We are therefore uncertain about the utility of these tests for seroprevalence surveys for public health management purposes. Concerns about high risk of bias and applicability make it likely that the accuracy of tests when used in clinical care will be lower than reported in the included studies. Sensitivity has mainly been evaluated in hospitalised patients, so it is unclear whether the tests are able to detect lower antibody levels likely seen with milder and asymptomatic COVID‐19 disease.

          The design, execution and reporting of studies of the accuracy of COVID‐19 tests requires considerable improvement. Studies must report data on sensitivity disaggregated by time since onset of symptoms. COVID‐19‐positive cases who are RT‐PCR‐negative should be included as well as those confirmed RT‐PCR, in accordance with the World Health Organization (WHO) and China National Health Commission of the People's Republic of China (CDC) case definitions. We were only able to obtain data from a small proportion of available tests, and action is needed to ensure that all results of test evaluations are available in the public domain to prevent selective reporting. This is a fast‐moving field and we plan ongoing updates of this living systematic review.

          Plain language summary

          What is the diagnostic accuracy of antibody tests for the detection of infection with the COVID‐19 virus?

          Background

          COVID‐19 is an infectious disease caused by the SARS‐CoV‐2 virus that spreads easily between people in a similar way to the common cold or ‘flu. Most people with COVID‐19 have a mild to moderate respiratory illness, and some may have no symptoms (asymptomatic infection). Others experience severe symptoms and need specialist treatment and intensive care.

          The immune system of people who have COVID‐19 responds to infection by developing proteins that can attack the virus (antibodies) in their blood. Tests to detect antibodies in peoples' blood might show whether they currently have COVID‐19 or have had it previously.

          Why are accurate tests important?

          Accurate testing allows identification of people who might need treatment, or who need to isolate themselves to prevent the spread of infection. Failure to detect people with COVID‐19 when it is present (a false negative result) may delay treatment and risk further spread of infection to others. Incorrect identification of COVID‐19 when it is not present (a false positive result) may lead to unnecessary further testing, treatment, and isolation of the person and close contacts. Correct identification of people who have previously had COVID‐19 is important in measuring disease spread, assessing the success of public health interventions (like isolation), and potentially in identifying individuals with immunity (should antibodies in the future be shown to indicate immunity).

          To identify false negative and false positive results, antibody test results are compared in people known to have COVID‐19 and known not to have COVID‐19. Study participants are classified as to whether they are known or not known to have COVID‐19 based on criteria known as the ‘reference standard’. Many studies use samples taken from the nose and throat to identify people with COVID‐19. The samples undergo a test called reverse transcriptase polymerase chain reaction (RT‐PCR). This testing process can sometimes miss infection (false negative result), but additional tests can identify COVID‐19 infection in people with a negative RT‐PCR result. These include measuring clinical symptoms, like coughing or high temperature, or ‘imaging’ tests like chest X‐rays. People known not to have COVID‐19 are sometimes identified from stored blood samples taken before COVID‐19 existed, or from patients with respiratory symptoms found to be caused by other diseases.

          What did the review study?

          The studies looked at three types of antibody, IgA, IgG and IgM. Most tests measure both IgG and IgM, but some measure a single antibody or combinations of the three antibodies.

          Levels of antibodies rise and fall at different times after infection. IgG is the last to rise but lasts longest. Levels of antibodies are usually highest a few weeks after infection.

          Some antibody tests need specialist laboratory equipment. Others use disposable devices, similar to pregnancy tests. These tests can be used in laboratories or wherever the patient is (point‐of‐care), in hospital or at home.

          We wanted to find out whether antibody tests:

          ‐ are accurate enough to diagnose infection in people with or without symptoms of COVID‐19, and

          ‐ can be used to find out if someone has already had COVID‐19.

          What did we do?

          We looked for studies that measured the accuracy of antibody tests compared with reference standard criteria to detect current or past COVID‐19 infection. Studies could assess any antibody test compared with any reference standard. People could be tested in hospital or the community. Studies could test people known to have – or not to have – or be suspected of having COVID‐19.

          Study characteristics

          We found 54 relevant studies. Studies took place in Asia (38), Europe (15), and in both USA and China (1).

          Forty‐six studies included people who were in hospital with suspected or confirmed COVID‐19 infection only. Twenty‐nine studies compared test results in people with COVID‐19 with test results in healthy people or people with other diseases.

          Not all studies provided details about participants’ age and gender. Often, we could not tell whether studies were evaluating current or past infection, as few reported whether participants were recovering. We did not find any studies that tested only asymptomatic people.

          Main results

          Our findings come mainly from 38 studies that provided results based on the time since people first noticed symptoms.

          Antibody tests one week after first symptoms only detected 30% of people who had COVID‐19. Accuracy increased in week 2 with 70% detected, and was highest in week 3 (more than 90% detected). Little evidence was available after week 3. Tests gave false positive results in 2% of those without COVID‐19.

          Results from IgG/IgM tests three weeks after symptoms started suggested that if 1000 people had antibody tests, and 50 (5%) of them really had COVID‐19 (as we might expect in a national screening survey):

          ‐ 58 people would test positive for COVID‐19. Of these, 12 people (21%) would not have COVID‐19 (false positive result).

          ‐ 942 people would test negative for COVID‐19. Of these, 4 people (0.4%) would actually have COVID‐19 (false negative result).

          If we tested 1000 healthcare workers (in a high‐risk setting) who had had symptoms, and 500 (50%) of them really had COVID‐19:

          ‐ 464 people would test positive for COVID‐19. Of these, 7 people (2%) would not have COVID‐19 (false positive result).

          ‐ 537 people would test negative for COVID‐19. Of these, 43 (8%) would actually have COVID‐19 (false negative result).

          We did not find convincing differences in accuracy for different types of antibody test.

          How reliable were the results of the studies of this review?

          Our confidence in the evidence is limited for several reasons. In general, studies were small, did not use the most reliable methods and did not report their results fully. Often, they did not include patients with COVID‐19 who may have had a false negative result on PCR, and took their data for people without COVID‐19 from records of tests done before COVID‐19 arose. This may have affected test accuracy, but it is impossible to identify by how much.

          Who do the results of this review apply to?

          Most participants were in hospital with COVID‐19, so were likely to have more severe disease than people with mild symptoms who were not hospitalised. This means that we don't know how accurate antibody tests are for people with milder disease or no symptoms.

          More than half of the studies assessed tests they had developed themselves, most of which are not available to buy. Many studies were published quickly online as ‘preprints’. Preprints do not undergo the normal rigorous checks of published studies, so we are not certain how reliable they are.

          As most studies took place in Asia, we don't know whether test results would be similar elsewhere in the world.

          What are the implications of this review?

          The review shows that antibody tests could have a useful role in detecting if someone has had COVID‐19, but the timing of when the tests are used is important. Antibody tests may help to confirm COVID‐19 infection in people who have had symptoms for more than two weeks and do not have a RT‐PCR test, or have negative RT‐PCR test results. The tests are better at detecting COVID‐19 in people two or more weeks after their symptoms started, but we do not know how well they work more than five weeks after symptoms started. We do not know how well the tests work for people who have milder disease or no symptoms, because the studies in the review were mainly done in people who were in hospital. In time, we will learn whether having previously had COVID‐19 provides individuals with immunity to future infection.

          Further research is needed into the use of antibody tests in people recovering from COVID‐19 infection, and in people who have experienced mild symptoms or who never experienced symptoms.

          How up‐to‐date is this review?

          This review includes evidence published up to 27 April 2020. Because a lot of new research is being published in this field, we will update this review frequently.

          Related collections

          Most cited references241

          • Record: found
          • Abstract: found
          • Article: not found

          A familial cluster of pneumonia associated with the 2019 novel coronavirus indicating person-to-person transmission: a study of a family cluster

          Summary Background An ongoing outbreak of pneumonia associated with a novel coronavirus was reported in Wuhan city, Hubei province, China. Affected patients were geographically linked with a local wet market as a potential source. No data on person-to-person or nosocomial transmission have been published to date. Methods In this study, we report the epidemiological, clinical, laboratory, radiological, and microbiological findings of five patients in a family cluster who presented with unexplained pneumonia after returning to Shenzhen, Guangdong province, China, after a visit to Wuhan, and an additional family member who did not travel to Wuhan. Phylogenetic analysis of genetic sequences from these patients were done. Findings From Jan 10, 2020, we enrolled a family of six patients who travelled to Wuhan from Shenzhen between Dec 29, 2019 and Jan 4, 2020. Of six family members who travelled to Wuhan, five were identified as infected with the novel coronavirus. Additionally, one family member, who did not travel to Wuhan, became infected with the virus after several days of contact with four of the family members. None of the family members had contacts with Wuhan markets or animals, although two had visited a Wuhan hospital. Five family members (aged 36–66 years) presented with fever, upper or lower respiratory tract symptoms, or diarrhoea, or a combination of these 3–6 days after exposure. They presented to our hospital (The University of Hong Kong-Shenzhen Hospital, Shenzhen) 6–10 days after symptom onset. They and one asymptomatic child (aged 10 years) had radiological ground-glass lung opacities. Older patients (aged >60 years) had more systemic symptoms, extensive radiological ground-glass lung changes, lymphopenia, thrombocytopenia, and increased C-reactive protein and lactate dehydrogenase levels. The nasopharyngeal or throat swabs of these six patients were negative for known respiratory microbes by point-of-care multiplex RT-PCR, but five patients (four adults and the child) were RT-PCR positive for genes encoding the internal RNA-dependent RNA polymerase and surface Spike protein of this novel coronavirus, which were confirmed by Sanger sequencing. Phylogenetic analysis of these five patients' RT-PCR amplicons and two full genomes by next-generation sequencing showed that this is a novel coronavirus, which is closest to the bat severe acute respiatory syndrome (SARS)-related coronaviruses found in Chinese horseshoe bats. Interpretation Our findings are consistent with person-to-person transmission of this novel coronavirus in hospital and family settings, and the reports of infected travellers in other geographical regions. Funding The Shaw Foundation Hong Kong, Michael Seak-Kan Tong, Respiratory Viral Research Foundation Limited, Hui Ming, Hui Hoy and Chow Sin Lan Charity Fund Limited, Marina Man-Wai Lee, the Hong Kong Hainan Commercial Association South China Microbiology Research Fund, Sanming Project of Medicine (Shenzhen), and High Level-Hospital Program (Guangdong Health Commission).
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Detection of 2019 novel coronavirus (2019-nCoV) by real-time RT-PCR

            Background The ongoing outbreak of the recently emerged novel coronavirus (2019-nCoV) poses a challenge for public health laboratories as virus isolates are unavailable while there is growing evidence that the outbreak is more widespread than initially thought, and international spread through travellers does already occur. Aim We aimed to develop and deploy robust diagnostic methodology for use in public health laboratory settings without having virus material available. Methods Here we present a validated diagnostic workflow for 2019-nCoV, its design relying on close genetic relatedness of 2019-nCoV with SARS coronavirus, making use of synthetic nucleic acid technology. Results The workflow reliably detects 2019-nCoV, and further discriminates 2019-nCoV from SARS-CoV. Through coordination between academic and public laboratories, we confirmed assay exclusivity based on 297 original clinical specimens containing a full spectrum of human respiratory viruses. Control material is made available through European Virus Archive – Global (EVAg), a European Union infrastructure project. Conclusion The present study demonstrates the enormous response capacity achieved through coordination of academic and public laboratories in national and European research networks.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Virological assessment of hospitalized patients with COVID-2019

              Coronavirus disease 2019 (COVID-19) is an acute infection of the respiratory tract that emerged in late 20191,2. Initial outbreaks in China involved 13.8% of cases with severe courses, and 6.1% of cases with critical courses3. This severe presentation may result from the virus using a virus receptor that is expressed predominantly in the lung2,4; the same receptor tropism is thought to have determined the pathogenicity-but also aided in the control-of severe acute respiratory syndrome (SARS) in 20035. However, there are reports of cases of COVID-19 in which the patient shows mild upper respiratory tract symptoms, which suggests the potential for pre- or oligosymptomatic transmission6-8. There is an urgent need for information on virus replication, immunity and infectivity in specific sites of the body. Here we report a detailed virological analysis of nine cases of COVID-19 that provides proof of active virus replication in tissues of the upper respiratory tract. Pharyngeal virus shedding was very high during the first week of symptoms, with a peak at 7.11 × 108 RNA copies per throat swab on day 4. Infectious virus was readily isolated from samples derived from the throat or lung, but not from stool samples-in spite of high concentrations of virus RNA. Blood and urine samples never yielded virus. Active replication in the throat was confirmed by the presence of viral replicative RNA intermediates in the throat samples. We consistently detected sequence-distinct virus populations in throat and lung samples from one patient, proving independent replication. The shedding of viral RNA from sputum outlasted the end of symptoms. Seroconversion occurred after 7 days in 50% of patients (and by day 14 in all patients), but was not followed by a rapid decline in viral load. COVID-19 can present as a mild illness of the upper respiratory tract. The confirmation of active virus replication in the upper respiratory tract has implications for the containment of COVID-19.
                Bookmark

                Author and article information

                Journal
                Cochrane Database Syst Rev
                Cochrane Database Syst Rev
                14651858
                10.1002/14651858
                The Cochrane Database of Systematic Reviews
                John Wiley & Sons, Ltd (Chichester, UK )
                1469-493X
                25 June 2020
                June 2020
                25 June 2020
                : 2020
                : 6
                : CD013652
                Affiliations
                deptTest Evaluation Research Group, Institute of Applied Health Research University of Birmingham BirminghamUK
                deptMedical Library Amsterdam UMC, University of Amsterdam, Amsterdam Public Health AmsterdamNetherlands
                deptDivision of Health Sciences, Warwick Medical School University of Warwick CoventryUK
                FIND GenevaSwitzerland
                deptCochrane Netherlands Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht University UtrechtNetherlands
                deptDepartment of Clinical Epidemiology, Biostatistics and Bioinformatics Amsterdam University Medical Centers, University of Amsterdam AmsterdamNetherlands
                deptDepartment of Public Health and Primary Care KU Leuven LeuvenBelgium
                deptNIHR Birmingham Biomedical Research Centre University Hospitals Birmingham NHS Foundation Trust and University of Birmingham BirminghamUK
                deptBiomarker and Test Evaluation Programme (BiTE) Amsterdam UMC, University of Amsterdam AmsterdamNetherlands
                Article
                CD013652 CD013652
                10.1002/14651858.CD013652
                7387103
                32584464
                efcb35dc-d1a4-4dbd-b087-2fadc036a3fa
                Copyright © 2020 The Authors. Cochrane Database of Systematic Reviews published by John Wiley & Sons, Ltd. on behalf of The Cochrane Collaboration.

                This is an open access article under the terms of the Creative Commons Attribution-Non-Commercial Licence, which permits use, distribution and reproduction in any medium, provided the original work is properly cited and is not used for commercial purposes.

                History
                Categories
                Diagnosis
                Infectious disease
                COVID-19

                Comments

                Comment on this article