29
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Targeting AKT/mTOR in Oral Cancer: Mechanisms and Advances in Clinical Trials

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Oral cancer (OC) is a devastating disease that takes the lives of lots of people globally every year. The current spectrum of treatment modalities does not meet the needs of the patients. The disease heterogeneity demands personalized medicine or targeted therapies. Therefore, there is an urgent need to identify potential targets for the treatment of OC. Abundant evidence has suggested that the components of the protein kinase B (AKT)/ mammalian target of rapamycin (mTOR) pathway are intrinsic factors for carcinogenesis. The AKT protein is central to the proliferation and survival of normal and cancer cells, and its downstream protein, mTOR, also plays an indispensable role in the cellular processes. The wide involvement of the AKT/mTOR pathway has been noted in oral squamous cell carcinoma (OSCC). This axis significantly regulates the various hallmarks of cancer, like proliferation, survival, angiogenesis, invasion, metastasis, autophagy, and epithelial-to-mesenchymal transition (EMT). Activated AKT/mTOR signaling is also associated with circadian signaling, chemoresistance and radio-resistance in OC cells. Several miRNAs, circRNAs and lncRNAs also modulate this pathway. The association of this axis with the process of tumorigenesis has culminated in the identification of its specific inhibitors for the prevention and treatment of OC. In this review, we discussed the significance of AKT/mTOR signaling in OC and its potential as a therapeutic target for the management of OC. This article also provided an update on several AKT/mTOR inhibitors that emerged as promising candidates for therapeutic interventions against OC/head and neck cancer (HNC) in clinical studies.

          Related collections

          Most cited references184

          • Record: found
          • Abstract: found
          • Article: not found

          Exome sequencing of head and neck squamous cell carcinoma reveals inactivating mutations in NOTCH1.

          Head and neck squamous cell carcinoma (HNSCC) is the sixth most common cancer worldwide. To explore the genetic origins of this cancer, we used whole-exome sequencing and gene copy number analyses to study 32 primary tumors. Tumors from patients with a history of tobacco use had more mutations than did tumors from patients who did not use tobacco, and tumors that were negative for human papillomavirus (HPV) had more mutations than did HPV-positive tumors. Six of the genes that were mutated in multiple tumors were assessed in up to 88 additional HNSCCs. In addition to previously described mutations in TP53, CDKN2A, PIK3CA, and HRAS, we identified mutations in FBXW7 and NOTCH1. Nearly 40% of the 28 mutations identified in NOTCH1 were predicted to truncate the gene product, suggesting that NOTCH1 may function as a tumor suppressor gene rather than an oncogene in this tumor type.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            DEPTOR is an mTOR inhibitor frequently overexpressed in multiple myeloma cells and required for their survival.

            The mTORC1 and mTORC2 pathways regulate cell growth, proliferation, and survival. We identify DEPTOR as an mTOR-interacting protein whose expression is negatively regulated by mTORC1 and mTORC2. Loss of DEPTOR activates S6K1, Akt, and SGK1, promotes cell growth and survival, and activates mTORC1 and mTORC2 kinase activities. DEPTOR overexpression suppresses S6K1 but, by relieving feedback inhibition from mTORC1 to PI3K signaling, activates Akt. Consistent with many human cancers having activated mTORC1 and mTORC2 pathways, DEPTOR expression is low in most cancers. Surprisingly, DEPTOR is highly overexpressed in a subset of multiple myelomas harboring cyclin D1/D3 or c-MAF/MAFB translocations. In these cells, high DEPTOR expression is necessary to maintain PI3K and Akt activation and a reduction in DEPTOR levels leads to apoptosis. Thus, we identify a novel mTOR-interacting protein whose deregulated overexpression in multiple myeloma cells represents a mechanism for activating PI3K/Akt signaling and promoting cell survival.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              A Pan-Cancer Proteogenomic Atlas of PI3K/AKT/mTOR Pathway Alterations.

              Molecular alterations involving the PI3K/AKT/mTOR pathway (including mutation, copy number, protein, or RNA) were examined across 11,219 human cancers representing 32 major types. Within specific mutated genes, frequency, mutation hotspot residues, in silico predictions, and functional assays were all informative in distinguishing the subset of genetic variants more likely to have functional relevance. Multiple oncogenic pathways including PI3K/AKT/mTOR converged on similar sets of downstream transcriptional targets. In addition to mutation, structural variations and partial copy losses involving PTEN and STK11 showed evidence for having functional relevance. A substantial fraction of cancers showed high mTOR pathway activity without an associated canonical genetic or genomic alteration, including cancers harboring IDH1 or VHL mutations, suggesting multiple mechanisms for pathway activation.
                Bookmark

                Author and article information

                Journal
                Int J Mol Sci
                Int J Mol Sci
                ijms
                International Journal of Molecular Sciences
                MDPI
                1422-0067
                06 May 2020
                May 2020
                : 21
                : 9
                : 3285
                Affiliations
                [1 ]Cancer Biology Laboratory and DBT-AIST International Center for Translational and Environmental Research (DAICENTER), Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Assam 781039, India; harsha.choudhary@ 123456iitg.ac.in (C.H.); kishore.banik@ 123456iitg.ac.in (K.B.); sosmi176106101@ 123456iitg.ac.in (S.G.); rajes174106009@ 123456alumni.iitg.ac.in (R.V.); deyparama@ 123456iitg.ac.in (D.P.); varsharana@ 123456iitg.ac.in (V.R.); bano176106104@ 123456iitg.ac.in (B.S.); elinakhatoon@ 123456gmail.com (E.K.)
                [2 ]Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore; e0336095@ 123456u.nus.edu
                [3 ]Cancer Science Institute of Singapore, National University of Singapore, Singapore 117599, Singapore
                Author notes
                [* ]Correspondence: csiapk@ 123456nus.edu.sg (A.P.K.); kunnumakkara@ 123456iitg.ac.in (A.B.K.); Tel.: +65-6516-5456 (A.P.K.); +91-361-258-2231 (A.B.K.); Fax: +65-6873-9664 (A.P.K.); +91-361-258-2249 (A.B.K.)
                Author information
                https://orcid.org/0000-0001-7854-2406
                https://orcid.org/0000-0002-3754-5712
                Article
                ijms-21-03285
                10.3390/ijms21093285
                7246494
                32384682
                efe083c4-43dc-4675-aa03-b24a27903fca
                © 2020 by the authors.

                Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( http://creativecommons.org/licenses/by/4.0/).

                History
                : 15 April 2020
                : 03 May 2020
                Categories
                Review

                Molecular biology
                akt,mtor,oral cancer,inhibitors,treatment,pathway
                Molecular biology
                akt, mtor, oral cancer, inhibitors, treatment, pathway

                Comments

                Comment on this article