7
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Reconstruction of the Largest Pedigree Network for Pear Cultivars and Evaluation of the Genetic Diversity of the USDA-ARS National Pyrus Collection

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The USDA-ARS National Clonal Germplasm Repository (NCGR) in Corvallis, Oregon, maintains one of the world’s largest and most diverse living Pyrus collection. A thorough genetic characterization of this germplasm will provide relevant information to optimize the conservation strategy of pear biodiversity, support the use of this germplasm in breeding, and increase our knowledge of Pyrus taxonomy, evolution, and domestication. In the last two decades simple sequence repeat (SSR) markers have been used at the NCGR for cultivar identification and small population structure analysis. However, the recent development of the Applied Biosystems Axiom Pear 70K Genotyping Array has allowed high-density single nucleotide polymorphism (SNP)-based genotyping of almost the entire collection. In this study, we have analyzed this rich dataset to discover new synonyms and mutants, identify putative labeling errors in the collection, reconstruct the largest pear cultivar pedigree and further elucidate the genetic diversity of Pyrus.

          Most cited references43

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          The genome of the pear ( Pyrus bretschneideri Rehd.)

          The draft genome of the pear ( Pyrus bretschneideri ) using a combination of BAC-by-BAC and next-generation sequencing is reported. A 512.0-Mb sequence corresponding to 97.1% of the estimated genome size of this highly heterozygous species is assembled with 194× coverage. High-density genetic maps comprising 2005 SNP markers anchored 75.5% of the sequence to all 17 chromosomes. The pear genome encodes 42,812 protein-coding genes, and of these, ∼28.5% encode multiple isoforms. Repetitive sequences of 271.9 Mb in length, accounting for 53.1% of the pear genome, are identified. Simulation of eudicots to the ancestor of Rosaceae has reconstructed nine ancestral chromosomes. Pear and apple diverged from each other ∼5.4–21.5 million years ago, and a recent whole-genome duplication (WGD) event must have occurred 30–45 MYA prior to their divergence, but following divergence from strawberry. When compared with the apple genome sequence, size differences between the apple and pear genomes are confirmed mainly due to the presence of repetitive sequences predominantly contributed by transposable elements (TEs), while genic regions are similar in both species. Genes critical for self-incompatibility, lignified stone cells (a unique feature of pear fruit), sorbitol metabolism, and volatile compounds of fruit have also been identified. Multiple candidate SFB genes appear as tandem repeats in the S -locus region of pear; while lignin synthesis-related gene family expansion and highly expressed gene families of HCT , C3′H , and CCOMT contribute to high accumulation of both G-lignin and S-lignin. Moreover, alpha-linolenic acid metabolism is a key pathway for aroma in pear fruit.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            STRUCTURE PLOT: a program for drawing elegant STRUCTURE bar plots in user friendly interface

            Background Understanding structure of the population is one of the major objective of many genetic studies. The program STRUCTURE is commonly used to infer population structure using multi-locus genotype data. However, a tool with graphical-user interface is currently not available to visualize STRUCTURE bar plots. Results We introduce STRUCTURE PLOT, a program for drawing STRUCTURE bar plots. The program generates publication ready, aesthetic STRUCTURE bar plots by using individual Q matrix from STRUCTURE or CLUMPP output. The program is very simple to use and includes variety of options like sorting bar by original order or by K, and selection of colors from R colors or RColorBrewer palette. Individual or population labels can be printed below or above the plot in any angle. Size of the graph and label can be defined, and option is provided to save plot in variety of picture formats in user defined resolution. Conclusion The program is implemented as a web application for online users and also as a standalone shiny application. Web application is compatible to majority of leading web browsers and standalone version can be launched using a simple R command. The program can be freely accessed at http://btismysore.in/strplot.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              The Draft Genome Sequence of European Pear (Pyrus communis L. ‘Bartlett’)

              We present a draft assembly of the genome of European pear (Pyrus communis) ‘Bartlett’. Our assembly was developed employing second generation sequencing technology (Roche 454), from single-end, 2 kb, and 7 kb insert paired-end reads using Newbler (version 2.7). It contains 142,083 scaffolds greater than 499 bases (maximum scaffold length of 1.2 Mb) and covers a total of 577.3 Mb, representing most of the expected 600 Mb Pyrus genome. A total of 829,823 putative single nucleotide polymorphisms (SNPs) were detected using re-sequencing of ‘Louise Bonne de Jersey’ and ‘Old Home’. A total of 2,279 genetically mapped SNP markers anchor 171 Mb of the assembled genome. Ab initio gene prediction combined with prediction based on homology searching detected 43,419 putative gene models. Of these, 1219 proteins (556 clusters) are unique to European pear compared to 12 other sequenced plant genomes. Analysis of the expansin gene family provided an example of the quality of the gene prediction and an insight into the relationships among one class of cell wall related genes that control fruit softening in both European pear and apple (Malus×domestica). The ‘Bartlett’ genome assembly v1.0 (http://www.rosaceae.org/species/pyrus/pyrus_communis/genome_v1.0) is an invaluable tool for identifying the genetic control of key horticultural traits in pear and will enable the wide application of marker-assisted and genomic selection that will enhance the speed and efficiency of pear cultivar development.
                Bookmark

                Author and article information

                Journal
                G3 (Bethesda)
                Genetics
                G3: Genes, Genomes, Genetics
                G3: Genes, Genomes, Genetics
                G3: Genes, Genomes, Genetics
                G3: Genes|Genomes|Genetics
                Genetics Society of America
                2160-1836
                16 July 2020
                September 2020
                : 10
                : 9
                : 3285-3297
                Affiliations
                [* ]Department of Plant Sciences, University of California, Davis, CA
                []USDA Agricultural Research Service, National Clonal Germplasm Repository, Corvallis, OR
                Author notes
                [1 ]Corresponding author: Department of Plant Sciences, University of California, One Shields Avenue, 95616 Davis, CA. E-mail: smontanari@ 123456ucdavis.edu ; current E-mail address: Sara.Montanari@ 123456plantandfood.co.nz
                Author information
                http://orcid.org/0000-0001-9224-056X
                http://orcid.org/0000-0001-8625-2740
                Article
                GGG_401327
                10.1534/g3.120.401327
                7466967
                32675069
                efe0aa6a-5d7b-4bcb-9624-5674e1a965df
                Copyright © 2020 Montanari et al.

                This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International License ( http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 24 April 2020
                : 14 July 2020
                Page count
                Figures: 4, Tables: 2, Equations: 0, References: 61, Pages: 13
                Funding
                Funded by: California Pear Advisory Board
                Funded by: Pear Pest Management Research Fund
                Categories
                Investigations

                Genetics
                population structure,germplasm characterization,single nucleotide polymorphism markers,biodiversity conservation,pear breeding

                Comments

                Comment on this article