26
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Salinity Stress as an Elicitor for Phytochemicals and Minerals Accumulation in Selected Leafy Vegetables of Brassicaceae

      , ,
      Agronomy
      MDPI AG

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The potential role of NaCl (50–200 mM) as an eustressor for the accumulation of health promoting phytochemicals and maintaining the homeostasis of macro- and micro-elements in three, hydroponically grown Brassica leafy vegetables (Chinese cabbage, white cabbage, and kale) was investigated. Considering K+/Na+ ratio and proline contents as reliable stress markers, we confirmed more prominent stress status in Chinese cabbage followed by white cabbage and kale. Low to moderate salinity treatments (50 and 100 mM NaCl) caused an increase in most of the phenolic compounds in the analyzed Brassica leafy vegetables. Total glucosinolates were elicited by NaCl in a dose dependent manner. Salt treatment caused an increase in total chlorophylls but did not significantly affect carotenoid content. Furthermore, low to moderate treatments did not significantly disturb homeostasis of macro- and micro-elements, particularly in white cabbage and kale where the K level did not decrease significantly and Ca was even increased in white cabbage. We may conclude that salinity may elicit phytochemical accumulation in selecting vegetables grown on saline soils without undesirable disturbance in macro- and micro-elements homeostasis depending on salt concentration and species/varieties. This information may be of great importance in the selection of crops grown on saline soils.

          Related collections

          Most cited references44

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Phenolic Compounds in Brassica Vegetables

          Phenolic compounds are a large group of phytochemicals widespread in the plant kingdom. Depending on their structure they can be classified into simple phenols, phenolic acids, hydroxycinnamic acid derivatives and flavonoids. Phenolic compounds have received considerable attention for being potentially protective factors against cancer and heart diseases, in part because of their potent antioxidative properties and their ubiquity in a wide range of commonly consumed foods of plant origin. The Brassicaceae family includes a wide range of horticultural crops, some of them with economic significance and extensively used in the diet throughout the world. The phenolic composition of Brassica vegetables has been recently investigated and, nowadays, the profile of different Brassica species is well established. Here, we review the significance of phenolic compounds as a source of beneficial compounds for human health and the influence of environmental conditions and processing mechanisms on the phenolic composition of Brassica vegetables.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Evaluating physiological responses of plants to salinity stress

            Background Because soil salinity is a major abiotic constraint affecting crop yield, much research has been conducted to develop plants with improved salinity tolerance. Salinity stress impacts many aspects of a plant’s physiology, making it difficult to study in toto. Instead, it is more tractable to dissect the plant’s response into traits that are hypothesized to be involved in the overall tolerance of the plant to salinity. Scope and conclusions We discuss how to quantify the impact of salinity on different traits, such as relative growth rate, water relations, transpiration, transpiration use efficiency, ionic relations, photosynthesis, senescence, yield and yield components. We also suggest some guidelines to assist with the selection of appropriate experimental systems, imposition of salinity stress, and obtaining and analysing relevant physiological data using appropriate indices. We illustrate how these indices can be used to identify relationships amongst the proposed traits to identify which traits are the most important contributors to salinity tolerance. Salinity tolerance is complex and involves many genes, but progress has been made in studying the mechanisms underlying a plant’s response to salinity. Nevertheless, several previous studies on salinity tolerance could have benefited from improved experimental design. We hope that this paper will provide pertinent information to researchers on performing proficient assays and interpreting results from salinity tolerance experiments.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              The Role of Polyphenols in Abiotic Stress Response: The Influence of Molecular Structure

              Abiotic stressors such as extreme temperatures, drought, flood, light, salt, and heavy metals alter biological diversity and crop production worldwide. Therefore, it is important to know the mechanisms by which plants cope with stress conditions. Polyphenols, which are the largest group of plant-specialized metabolites, are generally recognized as molecules involved in stress protection in plants. This diverse group of metabolites contains various structures, from simple forms consisting of one aromatic ring to more complex ones consisting of large number of polymerized molecules. Consequently, all these molecules, depending on their structure, may show different roles in plant growth, development, and stress protection. In the present review, we aimed to summarize data on how different polyphenol structures influence their biological activity and their roles in abiotic stress responses. We focused our review on phenolic acids, flavonoids, stilbenoids, and lignans.
                Bookmark

                Author and article information

                Contributors
                (View ORCID Profile)
                (View ORCID Profile)
                Journal
                ABSGGL
                Agronomy
                Agronomy
                MDPI AG
                2073-4395
                February 2021
                February 17 2021
                : 11
                : 2
                : 361
                Article
                10.3390/agronomy11020361
                efecf716-b5eb-40e1-acc4-85beb7a9bc8a
                © 2021

                https://creativecommons.org/licenses/by/4.0/

                History

                Comments

                Comment on this article