0
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Maternal dietary linoleic acid supplementation promotes muscle fibre type transformation in suckling piglets

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references30

          • Record: found
          • Abstract: found
          • Article: not found

          Skeletal muscle fiber-type switching, exercise intolerance, and myopathy in PGC-1alpha muscle-specific knock-out animals.

          The transcriptional coactivator peroxisome proliferator-activated receptor gamma coactivator 1alpha (PGC-1alpha) is a key integrator of neuromuscular activity in skeletal muscle. Ectopic expression of PGC-1alpha in muscle results in increased mitochondrial number and function as well as an increase in oxidative, fatigue-resistant muscle fibers. Whole body PGC-1alpha knock-out mice have a very complex phenotype but do not have a marked skeletal muscle phenotype. We thus analyzed skeletal muscle-specific PGC-1alpha knock-out mice to identify a specific role for PGC-1alpha in skeletal muscle function. These mice exhibit a shift from oxidative type I and IIa toward type IIx and IIb muscle fibers. Moreover, skeletal muscle-specific PGC-1alpha knock-out animals have reduced endurance capacity and exhibit fiber damage and elevated markers of inflammation following treadmill running. Our data demonstrate a critical role for PGC-1alpha in maintenance of normal fiber type composition and of muscle fiber integrity following exertion.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            AMPK: a metabolic gauge regulating whole-body energy homeostasis.

            AMP-activated protein kinase (AMPK) is the downstream component of a kinase cascade that acts as a gauge of cellular energy levels. Over the last few years, accumulating evidence has demonstrated that AMPK is also involved in the regulation of energy balance at the whole-body level by responding to hormones and nutrient signals, which leads to changes in energy homeostasis. The physiological relevance of this new role of AMPK is demonstrated by the fact that impairment of AMPK function is associated with metabolic alterations, insulin resistance, obesity, hormonal disorders and cardiovascular disease. Here, we summarize the role of AMPK in the regulation of energy homeostasis. Understanding this key enzyme and its tissue-specific regulation will provide new targets for the treatment of metabolic disorders.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Skeletal muscle adaptation to exercise training: AMP-activated protein kinase mediates muscle fiber type shift.

              Regular endurance exercise has profound benefits on overall health, including the prevention of obesity, cardiovascular disease, and diabetes. The objective of this study was to determine whether AMP-activated protein kinase (AMPK) mediates commonly observed adaptive responses to exercise training in skeletal muscle. Six weeks of voluntary wheel running induced a significant (P < 0.05) fiber type IIb to IIa/x shift in triceps muscle of wild-type mice. Despite similar wheel running capacities, this training-induced shift was reduced by approximately 40% in transgenic mice expressing a muscle-specific AMPKalpha2 inactive subunit. Sedentary mice carrying an AMPK-activating mutation (gamma1TG) showed a 2.6-fold increase in type IIa/x fibers but no further increase with training. To determine whether AMPK is involved in concomitant metabolic adaptations to training, we measured markers of mitochondria (citrate synthase and succinate dehydrogenase) and glucose uptake capacity (GLUT4 and hexokinase II). Mitochondrial markers increased similarly in wild-type and AMPKalpha2-inactive mice. Sedentary gamma1TG mice showed a approximately 25% increase in citrate synthase activity but no further increase with training. GLUT4 protein expression was not different in either line of transgenic mice compared with wild-type mice and tended to increase with training, although this increase was not statistically significant. Training induced a approximately 65% increase in hexokinase II protein in wild-type mice but not in AMPKalpha2-inactive mice. Hexokinase II was significantly elevated in sedentary gamma1TG mice, without an additional increase with training. AMPK is not necessary for exercise training-induced increases in mitochondrial markers, but it is essential for fiber type IIb to IIa/x transformation and increases in hexokinase II protein.
                Bookmark

                Author and article information

                Journal
                Journal of Animal Physiology and Animal Nutrition
                J Anim Physiol Anim Nutr
                Wiley
                09312439
                December 2017
                December 2017
                October 20 2016
                : 101
                : 6
                : 1130-1136
                Affiliations
                [1 ]Key Laboratory of Molecular Animal Nutrition; Institute of Feed Science; Zhejiang University; Hangzhou China
                Article
                10.1111/jpn.12626
                eff1b585-7adb-4653-8001-a8039c75daf9
                © 2016

                http://doi.wiley.com/10.1002/tdm_license_1.1

                http://onlinelibrary.wiley.com/termsAndConditions#vor


                Comments

                Comment on this article