5
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      NDs@PDA@ICG Conjugates for Photothermal Therapy of Glioblastoma Multiforme

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The growing incidence of cancer is a problem for modern medicine, since the therapeutic efficacy of applied modalities is still not satisfactory in terms of patients’ survival rates, especially in the case of patients with brain tumors. The destructive influence of chemotherapy and radiotherapy on healthy cells reduces the chances of full recovery. With the development of nanotechnology, new ideas on cancer therapy, including brain tumors, have emerged. Photothermal therapy (PTT) is one of these. It utilizes nanoparticles (NPs) that can convert the light, preferably in the near-infrared (NIR) region, into heat. In this paper, we report the use of nanodiamonds (NDs) conjugated with biomimetic polydopamine (PDA) and indocyanine green (ICG) for glioblastoma cancer PTT therapy. The obtained materials were thoroughly analyzed in terms of their PTT effectiveness, as well as their physicochemical properties. The performed research demonstrated that NDs@PDA@ICG can be successfully applied in the photothermal therapy of glioblastoma for PTT and exhibited high photothermal conversion efficiency η above 40%, which is almost 10 times higher than in case of bare NDs. In regard to our results, our material was found to lead to a better therapeutic outcome and higher eradication of glioblastoma cells, as demonstrated in vitro.

          Related collections

          Most cited references52

          • Record: found
          • Abstract: not found
          • Article: not found

          Dopamine-melanin colloidal nanospheres: an efficient near-infrared photothermal therapeutic agent for in vivo cancer therapy.

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Graphene-based nanomaterials for drug delivery and tissue engineering.

            Nanomaterials offer interesting physicochemical and biological properties for biomedical applications due to their small size, large surface area and ability to interface/interact with the cells/tissues. Graphene-based nanomaterials are fast emerging as "two-dimensional wonder materials" due to their unique structure and excellent mechanical, optical and electrical properties and have been exploited in electronics and other fields. Emerging trends show that their exceptional properties can be exploited for biomedical applications, especially in drug delivery and tissue engineering. This article presents a comprehensive review of various types and properties of graphene family nanomaterials. We further highlight how these properties are being exploited for drug delivery and tissue engineering applications.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Real-time identification of liver cancers by using indocyanine green fluorescent imaging.

              We have often encountered difficulties in identifying small liver cancers during surgery. Fluorescent imaging using indocyanine green (ICG) has the potential to detect liver cancers through the visualization of the disordered biliary excretion of ICG in cancer tissues and noncancerous liver tissues compressed by the tumor. ICG had been intravenously injected for a routine liver function test in 37 patients with hepatocellular carcinoma (HCC) and 12 patients with metastasis of colorectal carcinoma (CRC) before liver resection. Surgical specimens were investigated using a near-infrared light camera system. Among the 49 subjects, the 26 patients examined during the latter period of the study (20 with HCC and 6 with metastasis) underwent ICG-fluorescent imaging of the liver surfaces before resection. ICG-fluorescent imaging identified all of the microscopically confirmed HCCs (n = 63) and CRC metastases (n = 28) in surgical specimens. Among the 63 HCCs, 8 tumors (13%, including 5 early HCCs) were not evident grossly unless observed by ICG-fluorescent imaging. Five false-positive nodules (4 large regenerative nodules and 1 bile duct proliferation) were identified among the fluorescent lesions. Well-differentiated HCCs appeared as uniformly fluorescing lesions with higher lesion-to-liver contrast than that of moderately or poorly differentiated HCCs (162.6 [71.1-218.2] per pixel vs 67.7 [-6.3-211.2] per pixel, P < .001), while CRC metastases were delineated as rim-fluorescing lesions. Fluorescent microscopy confirmed that fluorescence originated in the cytoplasm and pseudoglands of HCC cells and in the noncancerous liver parenchyma surrounding metastases. ICG-fluorescent imaging before resection identified 21 of the 41 HCCs (51%) and all of the 16 metastases that were examined. ICG-fluorescent imaging enables the highly sensitive identification of small and grossly unidentifiable liver cancers in real time, enhancing the accuracy of liver resection and operative staging. (c) 2009 American Cancer Society.
                Bookmark

                Author and article information

                Journal
                Biomimetics (Basel)
                Biomimetics (Basel)
                biomimetics
                Biomimetics
                MDPI
                2313-7673
                11 January 2019
                March 2019
                : 4
                : 1
                : 3
                Affiliations
                [1 ]NanoBioMedical Centre, Adam Mickiewicz University, ul. Umultowska 85, PL-61614 Poznań, Poland; damian.maziukiewicz@ 123456amu.edu.pl (D.M.); bartoszg@ 123456amu.edu.pl (B.F.G.); coyeme@ 123456amu.edu.pl (E.C.); stjurga@ 123456amu.edu.pl (S.J.)
                [2 ]Department of Macromolecular Physics, Faculty of Physics, Adam Mickiewicz University, Umultowska 85, PL-61614 Poznań, Poland
                Author notes
                [* ]Correspondence: radoslaw.mrowczynski@ 123456amu.edu.pl ; Tel.: +48-662-056-999
                Author information
                https://orcid.org/0000-0003-1563-1262
                https://orcid.org/0000-0002-4149-9720
                https://orcid.org/0000-0003-3687-911X
                Article
                biomimetics-04-00003
                10.3390/biomimetics4010003
                6477600
                31105189
                effac7d0-4cc9-4b62-b9e5-69701a6dba56
                © 2019 by the authors.

                Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( http://creativecommons.org/licenses/by/4.0/).

                History
                : 31 October 2018
                : 28 December 2018
                Categories
                Article

                nanodiamonds,polydopamine,glioblastoma multiforme,indocyanine green,photothermal therapy,cancer treatment

                Comments

                Comment on this article