9
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Formation binning: a new method for increased temporal resolution in regional studies, applied to the Late Cretaceous dinosaur fossil record of North America

      1 , 2 , 3
      Palaeontology
      Wiley

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references85

          • Record: found
          • Abstract: found
          • Article: not found

          The Phanerozoic record of global sea-level change.

          K. Miller (2005)
          We review Phanerozoic sea-level changes [543 million years ago (Ma) to the present] on various time scales and present a new sea-level record for the past 100 million years (My). Long-term sea level peaked at 100 +/- 50 meters during the Cretaceous, implying that ocean-crust production rates were much lower than previously inferred. Sea level mirrors oxygen isotope variations, reflecting ice-volume change on the 10(4)- to 10(6)-year scale, but a link between oxygen isotope and sea level on the 10(7)-year scale must be due to temperature changes that we attribute to tectonically controlled carbon dioxide variations. Sea-level change has influenced phytoplankton evolution, ocean chemistry, and the loci of carbonate, organic carbon, and siliciclastic sediment burial. Over the past 100 My, sea-level changes reflect global climate evolution from a time of ephemeral Antarctic ice sheets (100 to 33 Ma), through a time of large ice sheets primarily in Antarctica (33 to 2.5 Ma), to a world with large Antarctic and large, variable Northern Hemisphere ice sheets (2.5 Ma to the present).
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The Chicxulub asteroid impact and mass extinction at the Cretaceous-Paleogene boundary.

            The Cretaceous-Paleogene boundary approximately 65.5 million years ago marks one of the three largest mass extinctions in the past 500 million years. The extinction event coincided with a large asteroid impact at Chicxulub, Mexico, and occurred within the time of Deccan flood basalt volcanism in India. Here, we synthesize records of the global stratigraphy across this boundary to assess the proposed causes of the mass extinction. Notably, a single ejecta-rich deposit compositionally linked to the Chicxulub impact is globally distributed at the Cretaceous-Paleogene boundary. The temporal match between the ejecta layer and the onset of the extinctions and the agreement of ecological patterns in the fossil record with modeled environmental perturbations (for example, darkness and cooling) lead us to conclude that the Chicxulub impact triggered the mass extinction.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Phanerozoic trends in the global diversity of marine invertebrates.

              It has previously been thought that there was a steep Cretaceous and Cenozoic radiation of marine invertebrates. This pattern can be replicated with a new data set of fossil occurrences representing 3.5 million specimens, but only when older analytical protocols are used. Moreover, analyses that employ sampling standardization and more robust counting methods show a modest rise in diversity with no clear trend after the mid-Cretaceous. Globally, locally, and at both high and low latitudes, diversity was less than twice as high in the Neogene as in the mid-Paleozoic. The ratio of global to local richness has changed little, and a latitudinal diversity gradient was present in the early Paleozoic.
                Bookmark

                Author and article information

                Journal
                PALA
                Palaeontology
                Palaeontology
                Wiley
                00310239
                June 11 2020
                Affiliations
                [1 ]School of Geography, Earth & Environmental Sciences; University of Birmingham; Birmingham UK
                [2 ]Perot Museum of Nature & Science; Dallas TX USA
                [3 ]Department of Earth Sciences; Natural History Museum; London UK
                Article
                10.1111/pala.12492
                f003c206-5596-49e9-8f8e-59bc7038eda4
                © 2020

                http://doi.wiley.com/10.1002/tdm_license_1.1

                History

                Comments

                Comment on this article