2
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Management of Onion Thrips ( Thrips tabaci) in Organic Onion Production Using Multiple IPM Tactics

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Simple Summary

          Onion thrips ( Thrips tabaci) is a major pest in organic onion production and effective integrated pest management strategies are lacking. Our objective was to evaluate pest management programs consisting of several different tactics: (1) two onion plant cultivars with semi-glossy leaves (“Rossa di Milano” and B5336AxB5351C) and one with waxy leaves (“Bradley”), (2) silver reflective and white plastic mulches, and (3) with or without an application of a biopesticide (spinosad + neem oil tank mix). Thrips densities were counted weekly and bulbs weighed at harvest. The application of the biopesticide had the most significant reduction in thrips densities and increase in yield. The cultivar “Rossa di Milano” had lower thrips densities compared with “Bradley” and B5336AxB5351C, but also had the lowest yield. Reflective mulch had lower thrips densities than white mulch but had no effect on yield. None of the other tactics provided any significant additional benefits to thrips management. While biopesticides will still be a key component to onion thrips management programs, their application frequency should be further optimized.

          Abstract

          Onion thrips ( Thrips tabaci Lindeman) is a major pest in organic onion production and effective integrated pest management strategies are lacking. Our objective was to evaluate combinations of semi-glossy (“Rossa di Milano” and B5336AxB5351C) and waxy (“Bradley”) onion cultivars with reflective mulch, with or without biopesticides (spinosad + neem oil tank mix), to manage T. tabaci in organic onion production. Thrips densities were assessed weekly and bulbs graded and weighed at harvest. Onions sprayed with spinosad + neem oil had fewer T. tabaci (adults: 74% (2019); larvae: 40% (2018), 84% (2019) and produced higher yields (13% (2018), 23% (2019)) than onions that were unsprayed, regardless of mulch type or onion cultivar. “Rossa di Milano” had relatively fewer adult and larval thrips populations compared with “Bradley” (21% (2018), 32% (2019)) and B5336AxB5351C. However, “Rossa di Milano” had the lowest marketable yield in both years. Reflective mulch reduced densities on certain dates in both years compared to white mulch, but the largest and most consistent reduction only occurred in 2019. Reflective mulch had no impact on bulb yield. While spinosad + neem oil reduced thrips numbers and increased yield alone, none of the treatment combinations were effective at suppressing populations of thrips. Future T. tabaci management in organic onions will require optimization of the available effective biopesticides.

          Related collections

          Most cited references66

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Soil mulching significantly enhances yields and water and nitrogen use efficiencies of maize and wheat: a meta-analysis

          Global crop yields are limited by water and nutrient availability. Soil mulching (with plastic or straw) reduces evaporation, modifies soil temperature and thereby affects crop yields. Reported effects of mulching are sometimes contradictory, likely due to differences in climatic conditions, soil characteristics, crop species, and also water and nitrogen (N) input levels. Here we report on a meta-analysis of the effects of mulching on wheat and maize, using 1310 yield observations from 74 studies conducted in 19 countries. Our results indicate that mulching significantly increased yields, WUE (yield per unit water) and NUE (yield per unit N) by up to 60%, compared with no-mulching. Effects were larger for maize than wheat, and larger for plastic mulching than straw mulching. Interestingly, plastic mulching performed better at relatively low temperature while straw mulching showed the opposite trend. Effects of mulching also tended to decrease with increasing water input. Mulching effects were not related to soil organic matter content. In conclusion, soil mulching can significantly increase maize and wheat yields, WUE and NUE, and thereby may contribute to closing the yield gap between attainable and actual yields, especially in dryland and low nutrient input agriculture. The management of soil mulching requires site-specific knowledge.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Effect of mulching on soil and plant water status, and the growth and yield of wheat (Triticum aestivum L.) in a semi-arid environment

              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              Spinosad - a case study: an example from a natural products discovery programme

                Bookmark

                Author and article information

                Contributors
                Role: Academic Editor
                Journal
                Insects
                Insects
                insects
                Insects
                MDPI
                2075-4450
                01 March 2021
                March 2021
                : 12
                : 3
                Affiliations
                [1 ]Department of Entomology, Cornell University, Cornell AgriTech, 15 Castle Creek Dr., Geneva, NY 14456, USA; lei7@ 123456cornell.edu
                [2 ]Vegetable Crops Research Unit, Department of Horticulture, Agricultural Research Service, U.S. Department of Agriculture, 1575 Linden Drive, University of Wisconsin, Madison, WI 53706, USA; michael.havey@ 123456usda.gov
                Author notes
                [* ]Correspondence: ban6@ 123456cornell.edu ; Tel.: +1-315-787-2354
                Article
                insects-12-00207
                10.3390/insects12030207
                8000123
                f0157614-7f1d-4fda-95fa-5c0d86aef0ab
                © 2021 by the authors.

                Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( http://creativecommons.org/licenses/by/4.0/).

                Categories
                Article

                allium cepa l.,spinosad,neem oil,reflective mulch,plant resistance

                Comments

                Comment on this article