20
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Changes in circulating pro-protein convertase subtilisin/kexin type 9 levels – experimental and clinical approaches with lipid-lowering agents

      1 , 2 , 3 , 4 , 1 , 5 , 6 , 7 , 1
      European Journal of Preventive Cardiology
      SAGE Publications

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Regulation of pro-protein convertase subtilisin/kexin type 9 (PCSK9) by drugs has led to the development of a still small number of agents with powerful activity on low-density lipoprotein cholesterol levels, associated with a significant reduction of cardiovascular events in patients in secondary prevention. The Further Cardiovascular Outcomes Research with PCSK9 Inhibition in Subjects with Elevated Risk (FOURIER) and Evaluation of Cardiovascular Outcomes After an Acute Coronary Syndrome During Treatment With Alirocumab (ODYSSEY OUTCOMES) studies, with the two available PCSK9 antagonists, i.e. evolocumab and alirocumab, both reported a 15% reduction in major adverse cardiovascular events. Regulation of PCSK9 expression is dependent upon a number of factors, partly genetic and partly associated to a complex transcriptional system, mainly controlled by sterol regulatory element binding proteins. PCSK9 is further regulated by concomitant drug treatments, particularly by statins, enhancing PCSK9 secretion but decreasing its stimulatory phosphorylated form (S688). These complex transcriptional mechanisms lead to variable circulating levels making clinical measurements of plasma PCSK9 for cardiovascular risk assessment a debated matter. Determination of total PCSK9 levels may provide a diagnostic tool for explaining an apparent resistance to PCSK9 inhibitors, thus indicating the need for other approaches. Newer agents targeting PCSK9 are in clinical development with a major interest in those with a longer duration of action, e.g. RNA silencing, allowing optimal patient compliance. Interest has been expanded to areas not only limited to low-density lipoprotein cholesterol reduction but also investigating other non-lipid pathways raising cardiovascular risk, in particular inflammation associated to raised high-sensitivity C-reactive protein levels, not significantly affected by the present PCSK9 antagonists.

          Related collections

          Most cited references121

          • Record: found
          • Abstract: found
          • Article: not found

          Combined analysis of oligonucleotide microarray data from transgenic and knockout mice identifies direct SREBP target genes.

          The synthesis of fatty acids and cholesterol, the building blocks of membranes, is regulated by three membrane-bound transcription factors: sterol regulatory element-binding proteins (SREBP)-1a, -1c, and -2. Their function in liver has been characterized in transgenic mice that overexpress each SREBP isoform and in mice that lack all three nuclear SREBPs as a result of gene knockout of SREBP cleavage-activating protein (SCAP), a protein required for nuclear localization of SREBPs. Here, we use oligonucleotide arrays hybridized with RNA from livers of three lines of mice (transgenic for SREBP-1a, transgenic for SREBP-2, and knockout for SCAP) to identify genes that are likely to be direct targets of SREBPs in liver. A total of 1,003 genes showed statistically significant increased expression in livers of transgenic SREBP-1a mice, 505 increased in livers of transgenic SREBP-2 mice, and 343 showed decreased expression in Scap-/- livers. A subset of 33 genes met the stringent combinatorial criteria of induction in both SREBP transgenics and decreased expression in SCAP-deficient mice. Of these 33 genes, 13 were previously identified as direct targets of SREBP action. Of the remaining 20 genes, 13 encode enzymes or carrier proteins involved in cholesterol metabolism, 3 participate in fatty acid metabolism, and 4 have no known connection to lipid metabolism. Through application of stringent combinatorial criteria, the transgenic/knockout approach allows identification of genes whose activities are likely to be controlled directly by one family of transcription factors, in this case the SREBPs.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Binding of proprotein convertase subtilisin/kexin type 9 to epidermal growth factor-like repeat A of low density lipoprotein receptor decreases receptor recycling and increases degradation.

            Proprotein convertase subtilisin/kexin type 9 (PCSK9) promotes degradation of hepatic low density lipoprotein receptors (LDLR), the major route of clearance of circulating cholesterol. Gain-of-function mutations in PCSK9 cause hypercholesterolemia and premature atherosclerosis, whereas loss-of-function mutations result in hypocholesterolemia and protection from heart disease. Recombinant human PCSK9 binds the LDLR on the surface of cultured hepatocytes and promotes degradation of the receptor after internalization. Here we localized the site of binding of PCSK9 within the extracellular domain of the LDLR and determined the fate of the receptor after PCSK9 binding. Recombinant human PCSK9 interacted in a sequence-specific manner with the first epidermal growth factor-like repeat (EGF-A) in the EGF homology domain of the human LDLR. Similar binding specificity was observed between PCSK9 and purified EGF-A. Binding to EGF-A was calcium-dependent and increased dramatically with reduction in pH from 7 to 5.2. The addition of PCSK9, but not heat-inactivated PCSK9, to the medium of cultured hepatocytes resulted in redistribution of the receptor from the plasma membrane to lysosomes. These data are consistent with a model in which PCSK9 binding to EGF-A interferes with an acid-dependent conformational change required for receptor recycling. As a consequence, the LDLR is rerouted from the endosome to the lysosome where it is degraded.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Low-Density Lipoprotein Cholesterol Lowering With Evolocumab and Outcomes in Patients With Peripheral Artery Disease

              The PCSK9 (proprotein convertase subtilisin/kexin type 9) inhibitor evolocumab reduced low-density lipoprotein cholesterol and cardiovascular events in the FOURIER trial (Further Cardiovascular Outcomes Research With PCSK9 Inhibition in Subjects With Elevated Risk). We investigated the efficacy and safety of evolocumab in patients with peripheral artery disease (PAD) as well as the effect on major adverse limb events.
                Bookmark

                Author and article information

                Journal
                European Journal of Preventive Cardiology
                Eur J Prev Cardiolog
                SAGE Publications
                2047-4873
                2047-4881
                October 22 2018
                June 2019
                February 18 2019
                June 2019
                : 26
                : 9
                : 930-949
                Affiliations
                [1 ]Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Italy
                [2 ]Department of Hypertension, Medical University of Lodz, Poland
                [3 ]Polish Mother's Memorial Hospital Research Institute (PMMHRI), Poland
                [4 ]Cardiovascular Research Centre, University of Zielona Gora, Poland
                [5 ]Multimedica IRCCS, Italy
                [6 ]Dyslipidemia Center, A.S.S.T. Grande Ospedale Metropolitano Niguarda, Italy
                [7 ]Dipartimento di Scienze del Farmaco, Università degli Studi di Padova, Italy
                Article
                10.1177/2047487319831500
                30776916
                f017278f-effe-4bee-951a-60339406f972
                © 2019

                http://journals.sagepub.com/page/policies/text-and-data-mining-license

                History

                Comments

                Comment on this article