10
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Distribution of angiotensin AT1 and AT2 receptor subtypes in the rat kidney.

      The American journal of physiology
      Angiotensin I, physiology, Angiotensin II, Animals, Gene Expression Regulation, Immunohistochemistry, Kidney, cytology, Polymerase Chain Reaction, RNA, Messenger, analysis, biosynthesis, Rats, Rats, Sprague-Dawley, Receptors, Angiotensin

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          ANG II contributes importantly to the regulation of renal vascular resistance, glomerular filtration, and tubular epithelial transport, yet there remains a paucity of information regarding the localization of the ANG II type 1 and 2 (AT1 and AT2) receptors within the rat kidney particularly within the vasculature. The present study was designed to localize the transcriptional and translational site(s) of AT1 and AT2 receptor (AT1R and AT2R, respectively) expression within the rat kidney. Using immunohistochemistry, we detected the AT(1)R translational sites throughout the kidney, with the strongest labeling found in the vasculature of the renal cortex and the proximal tubules of the outer medulla. The AT2R protein expression was found throughout the rat kidney, although there was little to no expression found in the glomerulus and medullary thick ascending limbs of Henle (TAL). Gene-specific primers were then designed to distinguish between the receptor subtypes within microdissected renal tubular and vascular segments using RT-PCR. AT1AR, AT1BR, and AT2R mRNA were found within the renal vasculature (afferent arterioles, arcuate artery, and outer medullary descending vasa recta). The mRNA for both the AT1R isoforms was also detected in the glomeruli and the renal tubules (proximal tubules, TAL, and collecting ducts); however, no AT2R mRNA was detected within the glomerulus and was inconsistently found within the medullary TAL (MTAL). Taken together, these data show that mRNA for the AT1R subtypes was located in all of the renal tubular and vascular segments. Evidence for AT2R mRNA was also found in all but two of the vascular and tubular segments, the MTAL, and the glomeruli. These results are consistent with the whole tissue immunohistochemically localized receptors.

          Related collections

          Author and article information

          Comments

          Comment on this article