9
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Development and Evaluation of Oleanolic Acid Dosage Forms and Its Derivatives

      review-article
      , , , , ,
      BioMed Research International
      Hindawi

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Oleanolic acid is a pentacyclic triterpenoid compound that exists widely in medicinal herbs and other plants. Because of the extensive pharmacological activity, oleanolic acid has attracted more and more attention. However, the structural characteristics of oleanolic acid prevent it from being directly made into new drugs, which limits the application of oleanolic acid. Through the application of modern preparation techniques and methods, different oleanolic acid dosage forms and derivatives have been designed and synthesized. These techniques can improve the water solubility and bioavailability of oleanolic acid and lay a foundation for the new drug development. In this review, the recent progress in understanding the oleanolic acid dosage forms and its derivatives are discussed. Furthermore, these products were evaluated comprehensively from the perspective of characterization and pharmacokinetics, and this work may provide ideas and references for the development of oleanolic acid preparations.

          Related collections

          Most cited references123

          • Record: found
          • Abstract: found
          • Article: not found

          Pentacyclic triterpenes of the lupane, oleanane and ursane group as tools in cancer therapy.

          Today cancer treatment is not only a question of eliminating cancer cells by induction of cell death. New therapeutic strategies also include targeting the tumour microenvironment, avoiding angiogenesis, modulating the immune response or the chronic inflammation that is often associated with cancer. Furthermore, the induction of redifferentiation of dedifferentiated cancer cells is an interesting aspect in developing new therapy strategies. Plants provide a broad spectrum of potential drug substances for cancer therapy with multifaceted effects and targets. Pentacyclic triterpenes are one group of promising secondary plant metabolites. This review summarizes the potential of triterpenes belonging to the lupane, oleanane or ursane group, to treat cancer by different modes of action. Since Pisha et al. reported in 1995 that betulinic acid is a highly promising anticancer drug after inducing apoptosis in melanoma cell lines in vitro and in vivo, experimental work focused on the apoptosis inducing mechanisms of betulinic acid and other triterpenes. The antitumour effects were subsequently confirmed in a series of cancer cell lines from other origins, for example breast, colon, lung and neuroblastoma. In addition, in the last decade many studies have shown further effects that justify the expectation that triterpenes are useful to treat cancer by several modes of action. Thus, triterpene acids are known mainly for their antiangiogenic effects as well as their differentiation inducing effects. In particular, lupane-type triterpenes, such as betulin, betulinic acid and lupeol, display anti-inflammatory activities which often accompany immune modulation. Triterpene acids as well as triterpene monoalcohols and diols also show an antioxidative potential. The pharmacological potential of triterpenes of the lupane, oleanane or ursane type for cancer treatment seems high; although up to now no clinical trial has been published using these triterpenes in cancer therapy. They provide a multitarget potential for coping with new cancer strategies. Whether this is an effective approach for cancer treatment has to be proven. Because various triterpenes are an increasingly promising group of plant metabolites, the utilisation of different plants as their sources is of interest. Parts of plants, for example birch bark, rosemary leaves, apple peel and mistletoe shoots are rich in triterpenes and provide different triterpene compositions. Georg Thieme Verlag KG Stuttgart. New York.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Oleanolic acid.

            Oleanolic acid (3β-hydroxyolean-12-en-28-oic acid) is a pentacyclic triterpenoid compound with a widespread occurrence throughout the plant kingdom. In nature, the compound exists either as a free acid or as an aglycone precursor for triterpenoid saponins, in which it can be linked to one or more sugar chains. Oleanolic acid and its derivatives possess several promising pharmacological activities, such as hepatoprotective effects, and anti-inflammatory, antioxidant, or anticancer activities. With the recent elucidation of its biosynthesis and the imminent commercialization of the first oleanolic acid-derived drug, the compound promises to remain important for various studies. In this review, the recent progress in understanding the oleanolic acid biosynthesis and its pharmacology are discussed. Furthermore, the importance and potential application of synthetic oleanolic acid derivatives are highlighted, and research perspectives on oleanolic acid are given. Copyright © 2012 Elsevier Ltd. All rights reserved.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Cyclodextrins.

              Although cyclodextrins (CDs) have been studied for over 100 years and can be found in at least 35 pharmaceutical products, they are still regarded as novel pharmaceutical excipients. CDs are oligosaccharides that possess biological properties that are similar to their linear counterparts, but some of their physicochemical properties differ. CDs are able to form water-soluble inclusion complexes with many poorly soluble lipophilic drugs. Thus, CDs are used to enhance the aqueous solubility of drugs and to improve drug bioavailability after, for example, oral administration. Through CD complexation, poorly soluble drugs can be formulated as aqueous parenteral solutions, nasal sprays and eye drop solutions. These oligosaccharides are being recognized as non-toxic and pharmacologically inactive excipients for both drug and food products. Recently, it has been observed that CDs and CD complexes in particular self-assemble to form nanoparticles and that, under certain conditions, these nanoparticles can self-assemble to form microparticles. These properties have changed the way we perform CD research and have given rise to new CD formulation opportunities. Here, the pharmaceutical applications of CDs are reviewed with an emphasis on their solubilizing properties, their tendency to self-assemble to form aggregates, CD ternary complexes, and their metabolism and pharmacokinetics. Copyright © 2012 Elsevier B.V. All rights reserved.
                Bookmark

                Author and article information

                Contributors
                Journal
                Biomed Res Int
                Biomed Res Int
                BMRI
                BioMed Research International
                Hindawi
                2314-6133
                2314-6141
                2020
                25 November 2020
                : 2020
                : 1308749
                Affiliations
                School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
                Author notes

                Academic Editor: Sanyog Jain

                Author information
                https://orcid.org/0000-0002-0635-1632
                https://orcid.org/0000-0002-6380-671X
                Article
                10.1155/2020/1308749
                7710427
                f0342ecf-3cea-48ba-b971-6f73dbd95487
                Copyright © 2020 Anjie Feng et al.

                This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 19 July 2020
                : 18 August 2020
                : 3 November 2020
                Funding
                Funded by: National Science and Technology Major Project
                Award ID: 2017ZX09301064
                Categories
                Review Article

                Comments

                Comment on this article