20
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Human Cortical Neural Stem Cells Expressing Insulin-Like Growth Factor-I: A Novel Cellular Therapy for Alzheimer’s Disease

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          A human cortex-derived neural stem cell (NSC) line modified to express insulin-like growth factor-I (IGF-I), HK532-IGF-I, is characterized in this report. The cell line is under study as a cellular therapy for Alzheimer’s disease (AD). HK532-IGF-I cells preferentially differentiated into gamma-aminobutyric acid-ergic neurons, a subtype dysregulated in AD; produced increased vascular endothelial growth factor levels; and displayed an increased neuroprotective capacity in vitro. HK532-IGF-I cells survived peri-hippocampal transplantation in a murine AD model and exhibited long-term persistence in targeted brain areas.

          Abstract

          Alzheimer’s disease (AD) is the most prevalent age-related neurodegenerative disorder and a leading cause of dementia. Current treatment fails to modify underlying disease pathologies and very little progress has been made to develop effective drug treatments. Cellular therapies impact disease by multiple mechanisms, providing increased efficacy compared with traditional single-target approaches. In amyotrophic lateral sclerosis, we have shown that transplanted spinal neural stem cells (NSCs) integrate into the spinal cord, form synapses with the host, improve inflammation, and reduce disease-associated pathologies. Our current goal is to develop a similar “best in class” cellular therapy for AD. Here, we characterize a novel human cortex-derived NSC line modified to express insulin-like growth factor-I (IGF-I), HK532-IGF-I. Because IGF-I promotes neurogenesis and synaptogenesis in vivo, this enhanced NSC line offers additional environmental enrichment, enhanced neuroprotection, and a multifaceted approach to treating complex AD pathologies. We show that autocrine IGF-I production does not impact the cell secretome or normal cellular functions, including proliferation, migration, or maintenance of progenitor status. However, HK532-IGF-I cells preferentially differentiate into gamma-aminobutyric acid-ergic neurons, a subtype dysregulated in AD; produce increased vascular endothelial growth factor levels; and display an increased neuroprotective capacity in vitro. We also demonstrate that HK532-IGF-I cells survive peri-hippocampal transplantation in a murine AD model and exhibit long-term persistence in targeted brain areas. In conclusion, we believe that harnessing the benefits of cellular and IGF-I therapies together will provide the optimal therapeutic benefit to patients, and our findings support further preclinical development of HK532-IGF-I cells into a disease-modifying intervention for AD.

          Significance

          There is no cure for Alzheimer’s disease (AD) and no means of prevention. Current drug treatments temporarily slow dementia symptoms but ultimately fail to alter disease course. Given the prevalence of AD and an increasingly aging population, alternative therapeutic strategies are necessary. Cellular therapies impact disease by multiple mechanisms, providing increased efficacy compared with traditional, single-target drug discovery approaches. This study describes a novel enhanced human stem cell line that produces increased amounts of growth factors beneficial to the disease environment. Findings support further development into a potentially safe and clinically translatable cellular therapy for patients with AD.

          Related collections

          Most cited references74

          • Record: found
          • Abstract: found
          • Article: not found
          Is Open Access

          2013 Alzheimer's disease facts and figures.

          (2013)
          This report provides information to increase understanding of the public health impact of Alzheimer's disease (AD), including incidence and prevalence, mortality rates, health expenditures and costs of care, and effect on caregivers and society in general. It also explores the roles and unique challenges of long-distance caregivers, as well as interventions that target those challenges. An estimated 5.2 million Americans have AD. Approximately 200,000 people younger than 65 years with AD comprise the younger onset AD population; 5 million comprise the older onset AD population. Throughout the coming decades, the baby boom generation is projected to add about 10 million to the total number of people in the United States with AD. Today, someone in America develops AD every 68 seconds. By 2050, one new case of AD is expected to develop every 33 seconds, or nearly a million new cases per year, and the total estimated prevalence is expected to be 13.8 million. AD is the sixth leading cause of death in the United States and the fifth leading cause of death in Americans age 65 years or older. Between 2000 and 2010, the proportion of deaths resulting from heart disease, stroke, and prostate cancer decreased 16%, 23%, and 8%, respectively, whereas the proportion resulting from AD increased 68%. The number of deaths from AD as determined by official death certificates (83,494 in 2010) likely underrepresents the number of AD-related deaths in the United States. A projected 450,000 older Americans with AD will die in 2013, and a large proportion will die as a result of complications of AD. In 2012, more than 15 million family members and other unpaid caregivers provided an estimated 17.5 billion hours of care to people with AD and other dementias, a contribution valued at more than $216 billion. Medicare payments for services to beneficiaries age 65 years and older with AD and other dementias are three times as great as payments for beneficiaries without these conditions, and Medicaid payments are 19 times as great. Total payments in 2013 for health care, long-term care, and hospice services for people age 65 years and older with dementia are expected to be $203 billion (not including the contributions of unpaid caregivers). An estimated 2.3 million caregivers of people with AD and other dementias live at least 1 hour away from the care recipient. These "long-distance caregivers" face unique challenges, including difficulty in assessing the care recipient's true health condition and needs, high rates of family disagreement regarding caregiving decisions, and high out-of-pocket expenses for costs related to caregiving. Out-of-pocket costs for long-distance caregivers are almost twice as high as for local caregivers. Copyright © 2013. Published by Elsevier Inc.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            ApoE-directed therapeutics rapidly clear β-amyloid and reverse deficits in AD mouse models.

            Alzheimer's disease (AD) is associated with impaired clearance of β-amyloid (Aβ) from the brain, a process normally facilitated by apolipoprotein E (apoE). ApoE expression is transcriptionally induced through the action of the nuclear receptors peroxisome proliferator-activated receptor gamma and liver X receptors in coordination with retinoid X receptors (RXRs). Oral administration of the RXR agonist bexarotene to a mouse model of AD resulted in enhanced clearance of soluble Aβ within hours in an apoE-dependent manner. Aβ plaque area was reduced more than 50% within just 72 hours. Furthermore, bexarotene stimulated the rapid reversal of cognitive, social, and olfactory deficits and improved neural circuit function. Thus, RXR activation stimulates physiological Aβ clearance mechanisms, resulting in the rapid reversal of a broad range of Aβ-induced deficits.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Alzheimer’s disease drug-development pipeline: few candidates, frequent failures

              Introduction Alzheimer’s disease (AD) is increasing in frequency as the global population ages. Five drugs are approved for treatment of AD, including four cholinesterase inhibitors and an N-methyl-D-aspartate (NMDA)-receptor antagonist. We have an urgent need to find new therapies for AD. Methods We examined Clinicaltrials.gov, a public website that records ongoing clinical trials. We examined the decade of 2002 to 2012, to better understand AD-drug development. We reviewed trials by sponsor, sites, drug mechanism of action, duration, number of patients required, and rate of success in terms of advancement from one phase to the next. We also reviewed the current AD therapy pipeline. Results During the 2002 to 2012 observation period, 413 AD trials were performed: 124 Phase 1 trials, 206 Phase 2 trials, and 83 Phase 3 trials. Seventy-eight percent were sponsored by pharmaceutical companies. The United States of America (U.S.) remains the single world region with the greatest number of trials; cumulatively, more non-U.S. than U.S. trials are performed. The largest number of registered trials addressed symptomatic agents aimed at improving cognition (36.6%), followed by trials of disease-modifying small molecules (35.1%) and trials of disease-modifying immunotherapies (18%). The mean length of trials increases from Phase 2 to Phase 3, and the number of participants in trials increases between Phase 2 and Phase 3. Trials of disease-modifying agents are larger and longer than those for symptomatic agents. A very high attrition rate was found, with an overall success rate during the 2002 to 2012 period of 0.4% (99.6% failure). Conclusions The Clinicaltrials.gov database demonstrates that relatively few clinical trials are undertaken for AD therapeutics, considering the magnitude of the problem. The success rate for advancing from one phase to another is low, and the number of compounds progressing to regulatory review is among the lowest found in any therapeutic area. The AD drug-development ecosystem requires support.
                Bookmark

                Author and article information

                Journal
                Stem Cells Transl Med
                Stem Cells Transl Med
                Stem Cells Translational Medicine
                sctm
                Stem Cells Translational Medicine
                Stem Cells Translational Medicine
                AlphaMed Press (Durham, NC, USA )
                2157-6564
                2157-6580
                March 2016
                7 January 2016
                1 September 2016
                : 5
                : 3
                : 379-391
                Affiliations
                [ a ]Department of Neurology, University of Michigan, Ann Arbor, Michigan, USA
                [ b ]Department of Neurosurgery, University of Michigan, Ann Arbor, Michigan, USA
                [ c ]Neuralstem, Inc., Germantown, Maryland, USA
                [ d ]A. Alfred Taubman Medical Research Institute, University of Michigan, Ann Arbor, Michigan, USA
                Author notes
                Correspondence: Eva L. Feldman, M.D., Ph.D., 5017 AAT-BSRB, 109 Zina Pitcher Place, Ann Arbor, Michigan 48109, USA. Telephone: 734-763-7274; E-Mail: efeldman@ 123456med.umich.edu
                Article
                20150103
                10.5966/sctm.2015-0103
                4807660
                26744412
                f0366d7c-4624-4781-99fd-13e98a3eed12
                ©AlphaMed Press
                History
                : 12 May 2015
                : 19 November 2015
                Page count
                Pages: 13
                Categories
                11
                37
                Tissue Engineering and Regenerative Medicine

                neural stem cell,insulin-like growth factor-i,cellular therapy,stem cell transplantation,alzheimer’s disease,neurodegeneration

                Comments

                Comment on this article