Blog
About

  • Record: found
  • Abstract: found
  • Article: found
Is Open Access

Characterizing the distribution and rates of microbial sulfate reduction at Middle Valley hydrothermal vents

Read this article at

Bookmark
      There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

      Abstract

      Few studies have directly measured sulfate reduction at hydrothermal vents, and relatively little is known about how environmental or ecological factors influence rates of sulfate reduction in vent environments. A better understanding of microbially mediated sulfate reduction in hydrothermal vent ecosystems may be achieved by integrating ecological and geochemical data with metabolic rate measurements. Here we present rates of microbially mediated sulfate reduction from three distinct hydrothermal vents in the Middle Valley vent field along the Juan de Fuca Ridge, as well as assessments of bacterial and archaeal diversity, estimates of total biomass and the abundance of functional genes related to sulfate reduction, and in situ geochemistry. Maximum rates of sulfate reduction occurred at 90 °C in all three deposits. Pyrosequencing and functional gene abundance data revealed differences in both biomass and community composition among sites, including differences in the abundance of known sulfate-reducing bacteria. The abundance of sequences for Thermodesulfovibro-like organisms and higher sulfate reduction rates at elevated temperatures suggests that Thermodesulfovibro-like organisms may have a role in sulfate reduction in warmer environments. The rates of sulfate reduction presented here suggest that—within anaerobic niches of hydrothermal deposits—heterotrophic sulfate reduction may be quite common and might contribute substantially to secondary productivity, underscoring the potential role of this process in both sulfur and carbon cycling at vents.

      Related collections

      Most cited references 46

      • Record: found
      • Abstract: not found
      • Article: not found

      Gapped BLAST and PSI-BLAST: a new generation of protein database search programs.

      The BLAST programs are widely used tools for searching protein and DNA databases for sequence similarities. For protein comparisons, a variety of definitional, algorithmic and statistical refinements described here permits the execution time of the BLAST programs to be decreased substantially while enhancing their sensitivity to weak similarities. A new criterion for triggering the extension of word hits, combined with a new heuristic for generating gapped alignments, yields a gapped BLAST program that runs at approximately three times the speed of the original. In addition, a method is introduced for automatically combining statistically significant alignments produced by BLAST into a position-specific score matrix, and searching the database using this matrix. The resulting Position-Specific Iterated BLAST (PSI-BLAST) program runs at approximately the same speed per iteration as gapped BLAST, but in many cases is much more sensitive to weak but biologically relevant sequence similarities. PSI-BLAST is used to uncover several new and interesting members of the BRCT superfamily.
        Bookmark
        • Record: found
        • Abstract: found
        • Article: not found

        Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities.

        mothur aims to be a comprehensive software package that allows users to use a single piece of software to analyze community sequence data. It builds upon previous tools to provide a flexible and powerful software package for analyzing sequencing data. As a case study, we used mothur to trim, screen, and align sequences; calculate distances; assign sequences to operational taxonomic units; and describe the alpha and beta diversity of eight marine samples previously characterized by pyrosequencing of 16S rRNA gene fragments. This analysis of more than 222,000 sequences was completed in less than 2 h with a laptop computer.
          Bookmark
          • Record: found
          • Abstract: found
          • Article: not found

          The Ribosomal Database Project (RDP-II): sequences and tools for high-throughput rRNA analysis

          The Ribosomal Database Project (RDP-II) provides the research community with aligned and annotated rRNA gene sequences, along with analysis services and a phylogenetically consistent taxonomic framework for these data. Updated monthly, these services are made available through the RDP-II website (http://rdp.cme.msu.edu/). RDP-II release 9.21 (August 2004) contains 101 632 bacterial small subunit rRNA gene sequences in aligned and annotated format. High-throughput tools for initial taxonomic placement, identification of related sequences, probe and primer testing, data navigation and subalignment download are provided. The RDP-II email address for questions or comments is rdpstaff@msu.edu.
            Bookmark

            Author and article information

            Affiliations
            [1 ]Department of Organismic and Evolutionary Biology, Harvard University , Cambridge, MA, USA
            Author notes
            [* ]Department of Organismic and Evolutionary Biology, Harvard University , 16 Divinity Avenue, Cambridge, MA 02138-2020, USA. E-mail: pgirguis@ 123456oeb.harvard.edu
            Journal
            ISME J
            ISME J
            The ISME Journal
            Nature Publishing Group
            1751-7362
            1751-7370
            July 2013
            28 March 2013
            1 July 2013
            : 7
            : 7
            : 1391-1401
            23535916
            3695286
            ismej201317
            10.1038/ismej.2013.17
            Copyright © 2013 International Society for Microbial Ecology

            This work is licensed under the Creative Commons Attribution-NonCommercial-No Derivs Works 3.0 Unported License. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-nd/3.0/

            Categories
            Original Article

            Comments

            Comment on this article