10
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Risk assessment of the use of alternative animal and plant raw material resources in aquaculture feeds

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references448

          • Record: found
          • Abstract: found
          • Article: not found

          Polyphenols: chemistry, dietary sources, metabolism, and nutritional significance.

          Polyphenols constitute one of the most numerous and ubiquitous groups of plant metabolites and are an integral part of both human and animal diets. Ranging from simple phenolic molecules to highly polymerized compounds with molecular weights of greater than 30,000 Da, the occurrence of this complex group of substances in plant foods is extremely variable. Polyphenols traditionally have been considered antinutrients by animal nutritionists, because of the adverse effect of tannins, one type of polyphenol, on protein digestibility. However, recent interest in food phenolics has increased greatly, owing to their antioxidant capacity (free radical scavenging and metal chelating activities) and their possible beneficial implications in human health, such as in the treatment and prevention of cancer, cardiovascular disease, and other pathologies. Much of the literature refers to a single group of plant phenolics, the flavonoids. This review offers an overview of the nutritional effects of the main groups of polyphenolic compounds, including their metabolism, effects on nutrient bioavailability, and antioxidant activity, as well as a brief description of the chemistry of polyphenols and their occurrence in plant foods.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The 2005 World Health Organization reevaluation of human and Mammalian toxic equivalency factors for dioxins and dioxin-like compounds.

            In June 2005, a World Health Organization (WHO)-International Programme on Chemical Safety expert meeting was held in Geneva during which the toxic equivalency factors (TEFs) for dioxin-like compounds, including some polychlorinated biphenyls (PCBs), were reevaluated. For this reevaluation process, the refined TEF database recently published by Haws et al. (2006, Toxicol. Sci. 89, 4-30) was used as a starting point. Decisions about a TEF value were made based on a combination of unweighted relative effect potency (REP) distributions from this database, expert judgment, and point estimates. Previous TEFs were assigned in increments of 0.01, 0.05, 0.1, etc., but for this reevaluation, it was decided to use half order of magnitude increments on a logarithmic scale of 0.03, 0.1, 0.3, etc. Changes were decided by the expert panel for 2,3,4,7,8-pentachlorodibenzofuran (PeCDF) (TEF = 0.3), 1,2,3,7,8-pentachlorodibenzofuran (PeCDF) (TEF = 0.03), octachlorodibenzo-p-dioxin and octachlorodibenzofuran (TEFs = 0.0003), 3,4,4',5-tetrachlorbiphenyl (PCB 81) (TEF = 0.0003), 3,3',4,4',5,5'-hexachlorobiphenyl (PCB 169) (TEF = 0.03), and a single TEF value (0.00003) for all relevant mono-ortho-substituted PCBs. Additivity, an important prerequisite of the TEF concept was again confirmed by results from recent in vivo mixture studies. Some experimental evidence shows that non-dioxin-like aryl hydrocarbon receptor agonists/antagonists are able to impact the overall toxic potency of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) and related compounds, and this needs to be investigated further. Certain individual and groups of compounds were identified for possible future inclusion in the TEF concept, including 3,4,4'-TCB (PCB 37), polybrominated dibenzo-p-dioxins and dibenzofurans, mixed polyhalogenated dibenzo-p-dioxins and dibenzofurans, polyhalogenated naphthalenes, and polybrominated biphenyls. Concern was expressed about direct application of the TEF/total toxic equivalency (TEQ) approach to abiotic matrices, such as soil, sediment, etc., for direct application in human risk assessment. This is problematic as the present TEF scheme and TEQ methodology are primarily intended for estimating exposure and risks via oral ingestion (e.g., by dietary intake). A number of future approaches to determine alternative or additional TEFs were also identified. These included the use of a probabilistic methodology to determine TEFs that better describe the associated levels of uncertainty and "systemic" TEFs for blood and adipose tissue and TEQ for body burden.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              Expanding the utilization of sustainable plant products in aquafeeds: a review

                Bookmark

                Author and article information

                Contributors
                (View ORCID Profile)
                Journal
                Reviews in Aquaculture
                Rev Aquacult
                Wiley
                1753-5123
                1753-5131
                May 2020
                April 29 2019
                May 2020
                : 12
                : 2
                : 703-758
                Affiliations
                [1 ]Institute of Aquaculture University of Stirling Stirling UK
                [2 ]Department of Feed Safety Institute for Marine Research Bergen Norway
                [3 ]Aquaculture Research Institute University of Idaho Hagerman Idaho USA
                Article
                10.1111/raq.12347
                f03ab379-7fcb-4709-8c95-716f4e8a0804
                © 2020

                http://creativecommons.org/licenses/by/4.0/

                http://doi.wiley.com/10.1002/tdm_license_1.1

                History

                Quantitative & Systems biology,Biophysics
                Quantitative & Systems biology, Biophysics

                Comments

                Comment on this article