0
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Elevated cerebral pressure passivity is associated with prematurity-related intracranial hemorrhage.

      Pediatrics
      Blood Pressure, physiology, Echoencephalography, Female, Gestational Age, Homeostasis, Humans, Infant, Newborn, Infant, Premature, Infant, Premature, Diseases, epidemiology, physiopathology, Infant, Very Low Birth Weight, Intracranial Hemorrhages, Intracranial Hypertension, Logistic Models, Male, Monitoring, Physiologic, methods, Prevalence, Spectroscopy, Near-Infrared

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Cerebral pressure passivity is common in sick premature infants and may predispose to germinal matrix/intraventricular hemorrhage (GM/IVH), a lesion with potentially serious consequences. We studied the association between the magnitude of cerebral pressure passivity and GM/IVH. We enrolled infants <32 weeks' gestational age with indwelling mean arterial pressure (MAP) monitoring and excluded infants with known congenital syndromes or antenatal brain injury. We recorded continuous MAP and cerebral near-infrared spectroscopy hemoglobin difference (HbD) signals at 2 Hz for up to 12 hours/day and up to 5 days. Coherence and transfer function analysis between MAP and HbD signals was performed in 3 frequency bands (0.05-0.25, 0.25-0.5, and 0.5-1.0 Hz). Using MAP-HbD gain and clinical variables (including chorioamnionitis, Apgar scores, gestational age, birth weight, neonatal sepsis, and Score for Neonatal Acute Physiology II), we built a logistic regression model that best predicts cranial ultrasound abnormalities. In 88 infants (median gestational age: 26 weeks [range 23-30 weeks]), early cranial ultrasound showed GM/IVH in 31 (37%) and parenchymal echodensities in 10 (12%) infants; late cranial ultrasound showed parenchymal abnormalities in 19 (30%) infants. Low-frequency MAP-HbD gain (highest quartile mean) was significantly associated with early GM/IVH but not other ultrasound findings. The most parsimonious model associated with early GM/IVH included only gestational age and MAP-HbD gain. This novel cerebrovascular monitoring technique allows quantification of cerebral pressure passivity as MAP-HbD gain in premature infants. High MAP-HbD gain is significantly associated with GM/IVH. Precise temporal and causal relationship between MAP-HbD gain and GM/IVH awaits further study.

          Related collections

          Author and article information

          Comments

          Comment on this article