6
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Selective Recognition of Myoglobin in Biological Samples Using Molecularly Imprinted Polymer-Based Affinity Traps

      International Journal of Analytical Chemistry

      Hindawi

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The current work demonstrates the design, characterization, and preparation of molecularly imprinted microspheres for the selective detection of myoglobin in serum samples. The suspension polymerization approach was applied for the preparation of myoglobin imprinted microspheres. For this purpose, N-methacryloylamino folic acid-Nd 3+ (MAFol- Nd 3+) was chosen as the complex functional monomer. The optimization studies were performed changing the medium pH, temperature, and myoglobin concentration. pH 7.0 was determined as the optimum value where the prepared imprinted microspheres displayed maximum binding for myoglobin. The maximum binding capacity was achieved as 623 mgg −1. In addition, the selectivity studies were conducted. The results confirmed that the imprinted microspheres showed great selectivity towards myoglobin in the existence of hemoglobin, cytochrome c, and lysozyme which were chosen as potentially competing proteins.

          Related collections

          Most cited references 43

          • Record: found
          • Abstract: not found
          • Article: not found

          THE ADSORPTION OF GASES ON PLANE SURFACES OF GLASS, MICA AND PLATINUM.

            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Molecularly Imprinted Polymers: Present and Future Prospective

            Molecular Imprinting Technology (MIT) is a technique to design artificial receptors with a predetermined selectivity and specificity for a given analyte, which can be used as ideal materials in various application fields. Molecularly Imprinted Polymers (MIPs), the polymeric matrices obtained using the imprinting technology, are robust molecular recognition elements able to mimic natural recognition entities, such as antibodies and biological receptors, useful to separate and analyze complicated samples such as biological fluids and environmental samples. The scope of this review is to provide a general overview on MIPs field discussing first general aspects in MIP preparation and then dealing with various application aspects. This review aims to outline the molecularly imprinted process and present a summary of principal application fields of molecularly imprinted polymers, focusing on chemical sensing, separation science, drug delivery and catalysis. Some significant aspects about preparation and application of the molecular imprinting polymers with examples taken from the recent literature will be discussed. Theoretical and experimental parameters for MIPs design in terms of the interaction between template and polymer functionalities will be considered and synthesis methods for the improvement of MIP recognition properties will also be presented.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              Über die adsorptionin lösungen

                Bookmark

                Author and article information

                Contributors
                Journal
                Int J Anal Chem
                Int J Anal Chem
                IJAC
                International Journal of Analytical Chemistry
                Hindawi
                1687-8760
                1687-8779
                2018
                8 August 2018
                : 2018
                Affiliations
                Anadolu University, Yunus Emre Vocational School of Health Services, Department of Medical Services and Techniques, 26470 Eskisehir, Turkey
                Author notes

                Academic Editor: Jan Åke Jönsson

                Article
                10.1155/2018/4359892
                6106809
                Copyright © 2018 Rüstem Keçili.

                This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                Categories
                Research Article

                Analytical chemistry

                Comments

                Comment on this article