16
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Triazine-based covalent organic polymers: design, synthesis and applications in heterogeneous catalysis

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The development of triazine-based COPs using different building blocks or alternative synthetic chemical reactions and their potential application in heterogeneous catalysis.

          Abstract

          Triazine-based covalent organic polymers (COPs) constructed from triazine or nitrile containing precursors via covalent bonding are becoming an important sub-class of porous organic framework materials for a range of applications. In particular, these materials have been proposed as a new catalyst or support material for a variety of liquid phase organic transformation reactions owing to their tunable porous structures with high surface area, high nitrogen contents, high stability in both organic and aqueous media, and relatively easy synthesis. This review article summarizes the current research activities devoted to the synthesis and characterization of new triazine-based COP materials, and their applications for heterogeneous catalysis aiming at fine chemicals synthesis are presented with critical comments.

          Related collections

          Most cited references207

          • Record: found
          • Abstract: not found
          • Article: not found

          Transformation of carbon dioxide.

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Conjugated microporous polymers: design, synthesis and application.

            Conjugated microporous polymers (CMPs) are a class of organic porous polymers that combine π-conjugated skeletons with permanent nanopores, in sharp contrast to other porous materials that are not π-conjugated and with conventional conjugated polymers that are nonporous. As an emerging material platform, CMPs offer a high flexibility for the molecular design of conjugated skeletons and nanopores. Various chemical reactions, building blocks and synthetic methods have been developed and a broad variety of CMPs with different structures and specific properties have been synthesized, driving the rapid growth of the field. CMPs are unique in that they allow the complementary utilization of π-conjugated skeletons and nanopores for functional exploration; they have shown great potential for challenging energy and environmental issues, as exemplified by their excellent performance in gas adsorption, heterogeneous catalysis, light emitting, light harvesting and electrical energy storage. This review describes the molecular design principles of CMPs, advancements in synthetic and structural studies and the frontiers of functional exploration and potential applications.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              Technical and economic feasibility of centralized facilities for solar hydrogen production via photocatalysis and photoelectrochemistry

                Bookmark

                Author and article information

                Journal
                JMCAET
                Journal of Materials Chemistry A
                J. Mater. Chem. A
                Royal Society of Chemistry (RSC)
                2050-7488
                2050-7496
                2016
                2016
                : 4
                : 42
                : 16288-16311
                Article
                10.1039/C6TA06089G
                f0554841-31aa-4a55-869b-23768f276082
                © 2016
                History

                Comments

                Comment on this article