40
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Switching from Insulin to Oral Sulfonylureas in Patients with Diabetes Due to Kir6.2 Mutations

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Heterozygous activating mutations in KCNJ11, encoding the Kir6.2 subunit of the ATP-sensitive potassium (K(ATP)) channel, cause 30 to 58 percent of cases of diabetes diagnosed in patients under six months of age. Patients present with ketoacidosis or severe hyperglycemia and are treated with insulin. Diabetes results from impaired insulin secretion caused by a failure of the beta-cell K(ATP) channel to close in response to increased intracellular ATP. Sulfonylureas close the K(ATP) channel by an ATP-independent route. We assessed glycemic control in 49 consecutive patients with Kir6.2 mutations who received appropriate doses of sulfonylureas and, in smaller subgroups, investigated the insulin secretory responses to intravenous and oral glucose, a mixed meal, and glucagon. The response of mutant K(ATP) channels to the sulfonylurea tolbutamide was assayed in xenopus oocytes. A total of 44 patients (90 percent) successfully discontinued insulin after receiving sulfonylureas. The extent of the tolbutamide blockade of K(ATP) channels in vitro reflected the response seen in patients. Glycated hemoglobin levels improved in all patients who switched to sulfonylurea therapy (from 8.1 percent before treatment to 6.4 percent after 12 weeks of treatment, P<0.001). Improved glycemic control was sustained at one year. Sulfonylurea treatment increased insulin secretion, which was more highly stimulated by oral glucose or a mixed meal than by intravenous glucose. Exogenous glucagon increased insulin secretion only in the presence of sulfonylureas. Sulfonylurea therapy is safe in the short term for patients with diabetes caused by KCNJ11 mutations and is probably more effective than insulin therapy. This pharmacogenetic response to sulfonylureas may result from the closing of mutant K(ATP) channels, thereby increasing insulin secretion in response to incretins and glucose metabolism. (ClinicalTrials.gov number, NCT00334711 [ClinicalTrials.gov].). Copyright 2006 Massachusetts Medical Society.

          Related collections

          Most cited references 26

          • Record: found
          • Abstract: found
          • Article: not found

          Activating mutations in the gene encoding the ATP-sensitive potassium-channel subunit Kir6.2 and permanent neonatal diabetes.

          Patients with permanent neonatal diabetes usually present within the first three months of life and require insulin treatment. In most, the cause is unknown. Because ATP-sensitive potassium (K(ATP)) channels mediate glucose-stimulated insulin secretion from the pancreatic beta cells, we hypothesized that activating mutations in the gene encoding the Kir6.2 subunit of this channel (KCNJ11) cause neonatal diabetes. We sequenced the KCNJ11 gene in 29 patients with permanent neonatal diabetes. The insulin secretory response to intravenous glucagon, glucose, and the sulfonylurea tolbutamide was assessed in patients who had mutations in the gene. Six novel, heterozygous missense mutations were identified in 10 of the 29 patients. In two patients the diabetes was familial, and in eight it arose from a spontaneous mutation. Their neonatal diabetes was characterized by ketoacidosis or marked hyperglycemia and was treated with insulin. Patients did not secrete insulin in response to glucose or glucagon but did secrete insulin in response to tolbutamide. Four of the patients also had severe developmental delay and muscle weakness; three of them also had epilepsy and mild dysmorphic features. When the most common mutation in Kir6.2 was coexpressed with sulfonylurea receptor 1 in Xenopus laevis oocytes, the ability of ATP to block mutant K(ATP) channels was greatly reduced. Heterozygous activating mutations in the gene encoding Kir6.2 cause permanent neonatal diabetes and may also be associated with developmental delay, muscle weakness, and epilepsy. Identification of the genetic cause of permanent neonatal diabetes may facilitate the treatment of this disease with sulfonylureas. Copyright 2004 Massachusetts Medical Society
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Defining the relationship between plasma glucose and HbA(1c): analysis of glucose profiles and HbA(1c) in the Diabetes Control and Complications Trial.

            To define the relationship between HbA(1c) and plasma glucose (PG) levels in patients with type 1 diabetes using data from the Diabetes Control and Complications Trial (DCCT). The DCCT was a multicenter, randomized clinical trial designed to compare intensive and conventional therapies and their relative effects on the development and progression of diabetic complications in patients with type 1 diabetes. Quarterly HbA(1c) and corresponding seven-point capillary blood glucose profiles (premeal, postmeal, and bedtime) obtained in the DCCT were analyzed to define the relationship between HbA(1c) and PG. Only data from complete profiles with corresponding HbA(1c) were used (n = 26,056). Of the 1,441 subjects who participated in the study, 2 were excluded due to missing data. Mean plasma glucose (MPG) was estimated by multiplying capillary blood glucose by 1.11. Linear regression analysis weighted by the number of observations per subject was used to correlate MPG and HbA(1c). Linear regression analysis, using MPG and HbA(1c) summarized by patient (n = 1,439), produced a relationship of MPG (mmol/l) = (1.98 . HbA(1c)) - 4.29 or MPG (mg/dl) = (35.6 . HbA(1c)) - 77.3, r = 0.82). Among individual time points, afternoon and evening PG (postlunch, predinner, postdinner, and bedtime) showed higher correlations with HbA(1c) than the morning time points (prebreakfast, postbreakfast, and prelunch). We have defined the relationship between HbA(1c) and PG as assessed in the DCCT. Knowing this relationship can help patients with diabetes and their healthcare providers set day-to-day targets for PG to achieve specific HbA(1c) goals.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Pancreatic agenesis attributable to a single nucleotide deletion in the human IPF1 gene coding sequence.

              The homeodomain protein IPF1 (also known as IDX1, STF1 and PDX1; see Methods) is critical for development of the pancreas in mice and is a key factor for the regulation of the insulin gene in the beta-cells of the endocrine pancreas. Targeted disruption of the Ipf1 gene encoding IPF1 in transgenic mice results in a failure of the pancreas to develop (pancreatic agenesis). Here, we report the identification of a single nucleotide deletion within codon 63 of the human IPF1 gene (13q12.1) in a patient with pancreatic agenesis. The patient is homozygous for the point deletion, whereas both parents are heterozygotes for the same mutation. The deletion was not found in 184 chromosomes from normal individuals, indicating that the mutation is unlikely to be a rare polymorphism. The point deletion causes a frame shift at the C-terminal border of the transactivation domain of IPF1 resulting in the translation of 59 novel codons before termination, aminoproximal to the homeodomain essential for DNA binding. Expression of mutant IPF1 in Cos-1 cells confirms the expression of a prematurely terminated truncated protein of 16 kD. Thus, the affected patient should have no functional IPF1 protein. Given the essential role of IPF1 in pancreas development, it is likely that this autosomal recessive mutation is the cause of the pancreatic agenesis phenotype in this patient. Thus, IPF1 appears to be a critical regulator of pancreas development in humans as well as mice.
                Bookmark

                Author and article information

                Journal
                New England Journal of Medicine
                N Engl J Med
                Massachusetts Medical Society
                0028-4793
                1533-4406
                August 03 2006
                August 03 2006
                : 355
                : 5
                : 467-477
                Article
                10.1056/NEJMoa061759
                16885550
                © 2006
                Product

                Comments

                Comment on this article