18
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      MicroRNA Regulation of Oxidative Stress-Induced Cellular Senescence

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Aging is a time-related process of functional deterioration at cellular, tissue, organelle, and organismal level that ultimately brings life to end. Cellular senescence, a state of permanent cell growth arrest in response to cellular stress, is believed to be the driver of the aging process and age-related disorders. The free radical theory of aging, referred to as oxidative stress (OS) theory below, is one of the most studied aging promoting mechanisms. In addition, genetics and epigenetics also play large roles in accelerating and/or delaying the onset of aging and aging-related diseases. Among various epigenetic events, microRNAs (miRNAs) turned out to be important players in controlling OS, aging, and cellular senescence. miRNAs can generate rapid and reversible responses and, therefore, are ideal players for mediating an adaptive response against stress through their capacity to fine-tune gene expression. However, the importance of miRNAs in regulating OS in the context of aging and cellular senescence is largely unknown. The purpose of our article is to highlight recent advancements in the regulatory role of miRNAs in OS-induced cellular senescence.

          Related collections

          Most cited references109

          • Record: found
          • Abstract: found
          • Article: not found

          Oxidative stress shortens telomeres.

          Telomeres in most human cells shorten with each round of DNA replication, because they lack the enzyme telomerase. This is not, however, the only determinant of the rate of loss of telomeric DNA. Oxidative damage is repaired less well in telomeric DNA than elsewhere in the chromosome, and oxidative stress accelerates telomere loss, whereas antioxidants decelerate it. I suggest here that oxidative stress is an important modulator of telomere loss and that telomere-driven replicative senescence is primarily a stress response. This might have evolved to block the growth of cells that have been exposed to a high risk of mutation.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Methylation as a crucial step in plant microRNA biogenesis.

            Methylation on the base or the ribose is prevalent in eukaryotic ribosomal RNAs (rRNAs) and is thought to be crucial for ribosome biogenesis and function. Artificially introduced 2'-O-methyl groups in small interfering RNAs (siRNAs) can stabilize siRNAs in serum without affecting their activities in RNA interference in mammalian cells. Here, we show that plant microRNAs (miRNAs) have a naturally occurring methyl group on the ribose of the last nucleotide. Whereas methylation of rRNAs depends on guide RNAs, the methyltransferase protein HEN1 is sufficient to methylate miRNA/miRNA* duplexes. Our studies uncover a new and crucial step in plant miRNA biogenesis and have profound implications in the function of miRNAs.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              p53 mutant mice that display early ageing-associated phenotypes.

              The p53 tumour suppressor is activated by numerous stressors to induce apoptosis, cell cycle arrest, or senescence. To study the biological effects of altered p53 function, we generated mice with a deletion mutation in the first six exons of the p53 gene that express a truncated RNA capable of encoding a carboxy-terminal p53 fragment. This mutation confers phenotypes consistent with activated p53 rather than inactivated p53. Mutant (p53+/m) mice exhibit enhanced resistance to spontaneous tumours compared with wild-type (p53+/+) littermates. As p53+/m mice age, they display an early onset of phenotypes associated with ageing. These include reduced longevity, osteoporosis, generalized organ atrophy and a diminished stress tolerance. A second line of transgenic mice containing a temperature-sensitive mutant allele of p53 also exhibits early ageing phenotypes. These data suggest that p53 has a role in regulating organismal ageing.
                Bookmark

                Author and article information

                Journal
                Oxid Med Cell Longev
                Oxid Med Cell Longev
                OMCL
                Oxidative Medicine and Cellular Longevity
                Hindawi
                1942-0900
                1942-0994
                2017
                16 May 2017
                : 2017
                : 2398696
                Affiliations
                Institute for Biomedical Aging Research and Center for Molecular Biosciences Innsbruck (CMBI), Universität Innsbruck, Innsbruck, Austria
                Author notes

                Academic Editor: Jaideep Banerjee

                Author information
                http://orcid.org/0000-0001-9889-3473
                Article
                10.1155/2017/2398696
                5448073
                28593022
                f05accd9-2d44-4e12-8ce9-2b5d98cc3ea4
                Copyright © 2017 Huaije Bu et al.

                This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 1 February 2017
                : 31 March 2017
                : 11 April 2017
                Funding
                Funded by: CNPqb
                Funded by: Tiroler Wissenschaftsfonds (TWF)
                Funded by: European Union's Seventh Framework Programme
                Award ID: FP7/2007-2013
                Funded by: Austrian Research Promotion Agency (FFG)
                Categories
                Review Article

                Molecular medicine
                Molecular medicine

                Comments

                Comment on this article