10
views
0
recommends
+1 Recommend
2 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found

      Perforin, COVID‐19 and a possible pathogenic auto‐inflammatory feedback loop

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          During COVID‐19 infection, reduced function of natural killer (NK) cells can lead to both compromised viral clearance and dysregulation of the immune response. Such dysregulation leads to overproduction of cytokines, a raised neutrophil/lymphocyte ratio and monocytosis. This in turn increases IL‐6 expression, which promotes scar and thrombus formation. Excess IL‐6 also leads to a further reduction in NK function through downregulation of perforin expression, therefore forming a pathogenic auto‐inflammatory feedback loop. The perforin/granzyme system of cytotoxicity is the main mechanism through which NK cells and cytotoxic T lymphocytes eliminate virally infected host cells, as well as being central to their role in regulating immune responses to microbial infection. Here, we present epidemiological evidence suggesting an association between perforin expression and resistance to COVID‐19. In addition, we outline the manner in which a pathogenic auto‐inflammatory feedback loop could operate and the relationship of this loop to genes associated with severe COVID‐19. Such an auto‐inflammatory loop may be amenable to synergistic multimodal therapy.

          Related collections

          Most cited references83

          • Record: found
          • Abstract: found
          • Article: found

          COVID-19: consider cytokine storm syndromes and immunosuppression

          As of March 12, 2020, coronavirus disease 2019 (COVID-19) has been confirmed in 125 048 people worldwide, carrying a mortality of approximately 3·7%, 1 compared with a mortality rate of less than 1% from influenza. There is an urgent need for effective treatment. Current focus has been on the development of novel therapeutics, including antivirals and vaccines. Accumulating evidence suggests that a subgroup of patients with severe COVID-19 might have a cytokine storm syndrome. We recommend identification and treatment of hyperinflammation using existing, approved therapies with proven safety profiles to address the immediate need to reduce the rising mortality. Current management of COVID-19 is supportive, and respiratory failure from acute respiratory distress syndrome (ARDS) is the leading cause of mortality. 2 Secondary haemophagocytic lymphohistiocytosis (sHLH) is an under-recognised, hyperinflammatory syndrome characterised by a fulminant and fatal hypercytokinaemia with multiorgan failure. In adults, sHLH is most commonly triggered by viral infections 3 and occurs in 3·7–4·3% of sepsis cases. 4 Cardinal features of sHLH include unremitting fever, cytopenias, and hyperferritinaemia; pulmonary involvement (including ARDS) occurs in approximately 50% of patients. 5 A cytokine profile resembling sHLH is associated with COVID-19 disease severity, characterised by increased interleukin (IL)-2, IL-7, granulocyte-colony stimulating factor, interferon-γ inducible protein 10, monocyte chemoattractant protein 1, macrophage inflammatory protein 1-α, and tumour necrosis factor-α. 6 Predictors of fatality from a recent retrospective, multicentre study of 150 confirmed COVID-19 cases in Wuhan, China, included elevated ferritin (mean 1297·6 ng/ml in non-survivors vs 614·0 ng/ml in survivors; p 39·4°C 49 Organomegaly None 0 Hepatomegaly or splenomegaly 23 Hepatomegaly and splenomegaly 38 Number of cytopenias * One lineage 0 Two lineages 24 Three lineages 34 Triglycerides (mmol/L) 4·0 mmol/L 64 Fibrinogen (g/L) >2·5 g/L 0 ≤2·5 g/L 30 Ferritin ng/ml 6000 ng/ml 50 Serum aspartate aminotransferase <30 IU/L 0 ≥30 IU/L 19 Haemophagocytosis on bone marrow aspirate No 0 Yes 35 Known immunosuppression † No 0 Yes 18 The Hscore 11 generates a probability for the presence of secondary HLH. HScores greater than 169 are 93% sensitive and 86% specific for HLH. Note that bone marrow haemophagocytosis is not mandatory for a diagnosis of HLH. HScores can be calculated using an online HScore calculator. 11 HLH=haemophagocytic lymphohistiocytosis. * Defined as either haemoglobin concentration of 9·2 g/dL or less (≤5·71 mmol/L), a white blood cell count of 5000 white blood cells per mm3 or less, or platelet count of 110 000 platelets per mm3 or less, or all of these criteria combined. † HIV positive or receiving longterm immunosuppressive therapy (ie, glucocorticoids, cyclosporine, azathioprine).
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Clinical characteristics of 113 deceased patients with coronavirus disease 2019: retrospective study

            Abstract Objective To delineate the clinical characteristics of patients with coronavirus disease 2019 (covid-19) who died. Design Retrospective case series. Setting Tongji Hospital in Wuhan, China. Participants Among a cohort of 799 patients, 113 who died and 161 who recovered with a diagnosis of covid-19 were analysed. Data were collected until 28 February 2020. Main outcome measures Clinical characteristics and laboratory findings were obtained from electronic medical records with data collection forms. Results The median age of deceased patients (68 years) was significantly older than recovered patients (51 years). Male sex was more predominant in deceased patients (83; 73%) than in recovered patients (88; 55%). Chronic hypertension and other cardiovascular comorbidities were more frequent among deceased patients (54 (48%) and 16 (14%)) than recovered patients (39 (24%) and 7 (4%)). Dyspnoea, chest tightness, and disorder of consciousness were more common in deceased patients (70 (62%), 55 (49%), and 25 (22%)) than in recovered patients (50 (31%), 48 (30%), and 1 (1%)). The median time from disease onset to death in deceased patients was 16 (interquartile range 12.0-20.0) days. Leukocytosis was present in 56 (50%) patients who died and 6 (4%) who recovered, and lymphopenia was present in 103 (91%) and 76 (47%) respectively. Concentrations of alanine aminotransferase, aspartate aminotransferase, creatinine, creatine kinase, lactate dehydrogenase, cardiac troponin I, N-terminal pro-brain natriuretic peptide, and D-dimer were markedly higher in deceased patients than in recovered patients. Common complications observed more frequently in deceased patients included acute respiratory distress syndrome (113; 100%), type I respiratory failure (18/35; 51%), sepsis (113; 100%), acute cardiac injury (72/94; 77%), heart failure (41/83; 49%), alkalosis (14/35; 40%), hyperkalaemia (42; 37%), acute kidney injury (28; 25%), and hypoxic encephalopathy (23; 20%). Patients with cardiovascular comorbidity were more likely to develop cardiac complications. Regardless of history of cardiovascular disease, acute cardiac injury and heart failure were more common in deceased patients. Conclusion Severe acute respiratory syndrome coronavirus 2 infection can cause both pulmonary and systemic inflammation, leading to multi-organ dysfunction in patients at high risk. Acute respiratory distress syndrome and respiratory failure, sepsis, acute cardiac injury, and heart failure were the most common critical complications during exacerbation of covid-19.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Antibody responses to SARS-CoV-2 in patients with COVID-19

              We report acute antibody responses to SARS-CoV-2 in 285 patients with COVID-19. Within 19 days after symptom onset, 100% of patients tested positive for antiviral immunoglobulin-G (IgG). Seroconversion for IgG and IgM occurred simultaneously or sequentially. Both IgG and IgM titers plateaued within 6 days after seroconversion. Serological testing may be helpful for the diagnosis of suspected patients with negative RT-PCR results and for the identification of asymptomatic infections.
                Bookmark

                Author and article information

                Contributors
                lcunningham73@gmail.com
                Journal
                Scand J Immunol
                Scand J Immunol
                10.1111/(ISSN)1365-3083
                SJI
                Scandinavian Journal of Immunology
                John Wiley and Sons Inc. (Hoboken )
                0300-9475
                1365-3083
                22 September 2021
                November 2021
                22 September 2021
                : 94
                : 5 ( doiID: 10.1111/sji.v94.5 )
                : e13102
                Affiliations
                [ 1 ] St. John’s Institute of Dermatology Guy’s and St Thomas’ Hospital London UK
                [ 2 ] Faculty of Biology Medicine and Health University of Manchester Manchester UK
                [ 3 ] DABMEB Consultancy Ltd Wotton‐under‐Edge UK
                [ 4 ] Nuffield Department of Medicine University of Oxford Oxford UK
                Author notes
                [*] [* ] Correspondence

                Louise Cunningham, St. John’s Institute of Dermatology, Guy’s and St Thomas’ Hospital, London, UK.

                Email: lcunningham73@ 123456gmail.com

                Author information
                https://orcid.org/0000-0002-2009-3588
                Article
                SJI13102
                10.1111/sji.13102
                8646999
                34755902
                f069759e-86f5-4a98-abbc-d79f2e90f3e6
                © 2021 The Scandinavian Foundation for Immunology

                This article is being made freely available through PubMed Central as part of the COVID-19 public health emergency response. It can be used for unrestricted research re-use and analysis in any form or by any means with acknowledgement of the original source, for the duration of the public health emergency.

                History
                : 31 August 2021
                : 01 July 2021
                : 07 September 2021
                Page count
                Figures: 2, Tables: 0, Pages: 9, Words: 5508
                Categories
                Discussion Forum
                Discussion Forum
                Custom metadata
                2.0
                November 2021
                Converter:WILEY_ML3GV2_TO_JATSPMC version:6.0.9 mode:remove_FC converted:06.12.2021

                Immunology
                auto‐inflammatory,covid,cytokine storm,haemophagocytic lymphohistiocytosis,interleukin‐6,natural killer cell,perforin

                Comments

                Comment on this article