+1 Recommend
0 collections
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Functional Neuroanatomy of the Noradrenergic Locus Coeruleus: Its Roles in the Regulation of Arousal and Autonomic Function Part II: Physiological and Pharmacological Manipulations and Pathological Alterations of Locus Coeruleus Activity in Humans

      Read this article at

          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.


          The locus coeruleus (LC), the major noradrenergic nucleus of the brain, gives rise to fibres innervating most structures of the neuraxis. Recent advances in neuroscience have helped to unravel the neuronal circuitry controlling a number of physiological functions in which the LC plays a central role. Two such functions are the regulation of arousal and autonomic activity, which are inseparably linked largely via the involvement of the LC. Alterations in LC activity due to physiological or pharmacological manipulations or pathological processes can lead to distinct patterns of change in arousal and autonomic function. Physiological manipulations considered here include the presentation of noxious or anxiety-provoking stimuli and extremes in ambient temperature. The modification of LC-controlled functions by drug administration is discussed in detail, including drugs which directly modify the activity of LC neurones (e.g., via autoreceptors, storage, reuptake) or have an indirect effect through modulating excitatory or inhibitory inputs. The early vulnerability of the LC to the ageing process and to neurodegenerative disease (Parkinson’s and Alzheimer’s diseases) is of considerable clinical significance. In general, physiological manipulations and the administration of stimulant drugs, α 2-adrenoceptor antagonists and noradrenaline uptake inhibitors increase LC activity and thus cause heightened arousal and activation of the sympathetic nervous system. In contrast, the administration of sedative drugs, including α 2-adrenoceptor agonists, and pathological changes in LC function in neurodegenerative disorders and ageing reduce LC activity and result in sedation and activation of the parasympathetic nervous system.

          Related collections

          Most cited references 500

          • Record: found
          • Abstract: found
          • Article: not found

          Sleep and arousal: thalamocortical mechanisms.

           T Bal,  D McCormick (1996)
          Thalamocortical activity exhibits two distinct states: (a) synchronized rhythmic activity in the form of delta, spindle, and other slow waves during EEG-synchronized sleep and (b) tonic activity during waking and rapid-eye-movement sleep. Spindle waves are generated largely through a cyclical interaction between thalamocortical and thalamic reticular neurons involving both the intrinsic membrane properties of these cells and their anatomical interconnections. Specific alterations in the interactions between these cells can result in the generation of paroxysmal events resembling absence seizures in children. The release of several different neurotransmitters from the brain stem, hypothalamus, basal forebrain, and cerebral cortex results in a depolarization of thalamocortical and thalamic reticular neurons and an enhanced excitability in many cortical pyramidal cells, thereby suppressing the generation of sleep rhythms and promoting a state that is conducive to sensory processing and cognition.
            • Record: found
            • Abstract: found
            • Article: not found

            GABA(A) receptors: immunocytochemical distribution of 13 subunits in the adult rat brain.

            GABA(A) receptors are ligand-operated chloride channels assembled from five subunits in a heteropentameric manner. Using immunocytochemistry, we investigated the distribution of GABA(A) receptor subunits deriving from 13 different genes (alpha1-alpha6, beta1-beta3, gamma1-gamma3 and delta) in the adult rat brain. Subunit alpha1-, beta1-, beta2-, beta3- and gamma2-immunoreactivities were found throughout the brain, although differences in their distribution were observed. Subunit alpha2-, alpha3-, alpha4-, alpha5-, alpha6-, gamma1- and delta-immunoreactivities were more confined to certain brain areas. Thus, alpha2-subunit-immunoreactivity was preferentially located in forebrain areas and the cerebellum. Subunit alpha6-immunoreactivity was only present in granule cells of the cerebellum and the cochlear nucleus, and subunit gamma1-immunoreactivity was preferentially located in the central and medial amygdaloid nuclei, in pallidal areas, the substantia nigra pars reticulata and the inferior olive. The alpha5-subunit-immunoreactivity was strongest in Ammon's horn, the olfactory bulb and hypothalamus. In contrast, alpha4-subunit-immunoreactivity was detected in the thalamus, dentate gyrus, olfactory tubercle and basal ganglia. Subunit alpha3-immunoreactivity was observed in the glomerular and external plexiform layers of the olfactory bulb, in the inner layers of the cerebral cortex, the reticular thalamic nucleus, the zonal and superficial layers of the superior colliculus, the amygdala and cranial nerve nuclei. Only faint subunit gamma3-immunoreactivity was detected in most areas; it was darkest in midbrain and pontine nuclei. Subunit delta-immunoreactivity was frequently co-distributed with alpha4 subunit-immunoreactivity, e.g. in the thalamus, striatum, outer layers of the cortex and dentate molecular layer. Striking examples of complementary distribution of certain subunit-immunoreactivities were observed. Thus, subunit alpha2-, alpha4-, beta1-, beta3- and delta-immunoreactivities were considerably more concentrated in the neostriatum than in the pallidum and entopeduncular nucleus. In contrast, labeling for the alpha1-, beta2-, gamma1- and gamma2-subunits prevailed in the pallidum compared to the striatum. With the exception of the reticular thalamic nucleus, which was prominently stained for subunits alpha3, beta1, beta3 and gamma2, most thalamic nuclei were rich in alpha1-, alpha4-, beta2- and delta-immunoreactivities. Whereas the dorsal lateral geniculate nucleus was strongly immunoreactive for subunits alpha4, beta2 and delta, the ventral lateral geniculate nucleus was predominantly labeled for subunits alpha2, alpha3, beta1, beta3 and gamma2; subunit alpha1- and alpha5-immunoreactivities were about equally distributed in both areas. In most hypothalamic areas, immunoreactivities for subunits alpha1, alpha2, beta1, beta2 and beta3 were observed. In the supraoptic nucleus, staining of conspicuous dendritic networks with subunit alpha1, alpha2, beta2, and gamma2 antibodies was contrasted by perykarya labeled for alpha5-, beta1- and delta-immunoreactivities. Among all brain regions, the median emminence was most heavily labeled for subunit beta2-immunoreactivity. In most pontine and cranial nerve nuclei and in the medulla, only subunit alpha1-, beta2- and gamma2-immunoreactivities were strong, whereas the inferior olive was significantly labeled only for subunits beta1, gamma1 and gamma2. In this study, a highly heterogeneous distribution of 13 different GABA(A) receptor subunit-immunoreactivities was observed. This distribution and the apparently typical patterns of co-distribution of these GABA(A) receptor subunits support the assumption of multiple, differently assembled GABA(A) receptor subtypes and their heterogeneous distribution within the adult rat brain.
              • Record: found
              • Abstract: found
              • Article: not found

              Activity of norepinephrine-containing locus coeruleus neurons in behaving rats anticipates fluctuations in the sleep-waking cycle.

              Spontaneous discharge of norepinephrine-containing locus coeruleus (NE-LC) neurons was examined during the sleep-walking cycle (S-WC) in behaving rats. Single unit and multiple unit extracellular recordings yielded a consistent set of characteristic discharge properties. (1) Tonic discharge co-varied with stages of the S-WC, being highest during waking, lower during slow wave sleep, and virtually absent during paradoxical sleep. (2) Discharge anticipated S-WC stages as well as phasic cortical activity, such as spindles, during slow wave sleep. (3) Discharge decreased within active waking during grooming and sweet water consumption. (4) Bursts of impulses accompanied spontaneous or sensory-evoked interruptions of sleep, grooming, consumption, or other such ongoing behavior. (5) These characteristic discharge properties were topographically homogeneous for recordings throughout the NE-LC. (6) Phasic robust activity was synchronized markedly among neurons in multiple unit populations. (7) Field potentials occurred spontaneously in the NE-LC and were synchronized with bursts of unit activity from the same electrodes. (8) Field potentials became dissociated from unit activity during paradoxical sleep, exhibiting their highest rates in the virtual absence of impulses. These results are generally consistent with previous proposals that the NE-LC system is involved in regulating cortical and behavioral arousal. On the basis of the present data and those described in the following report (Aston-Jones, G., and F. E. Bloom (1981) J. Neurosci.1: 887-900), we conclude that these neurons may mediate a specific function within the general arousal framework. In brief, the NE-LC system may globally bias the responsiveness of target neurons and thereby influence overall behavioral orientation.

                Author and article information

                Curr Neuropharmacol
                Current Neuropharmacology
                Bentham Science Publishers Ltd.
                September 2008
                : 6
                : 3
                : 254-285
                Psychopharmacology Section, University of Nottingham, Division of Psychiatry, Queen’s Medical Centre, Nottingham NG7 2UH, UK
                Author notes
                [* ]Address correspondence to this author at Psychopharmacology Section, University of Nottingham, Medical School (Room B109), Queen’s Medical Centre, Nottingham NG7 2UH, UK; Tel: +44(0)115 823 0219; Fax: +44(0)115 823 0220 E-mail: elemer.szabadi@
                ©2008 Bentham Science Publishers Ltd.

                This is an open access article distributed under the terms of the Creative Commons Attribution License ( which permits unrestrictive use, distribution, and reproduction in any medium, provided the original work is properly cited.



                Comment on this article