35
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Transactivation Response DNA-Binding Protein of 43 (TDP-43) and Glial Cell Roles in Neurological Disorders

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The trans-activation response DNA-binding protein of 43kDa (TDP-43) is involved in the pathogenesis of multiple brain disorders. As scientists are unraveling TDP-43 function and its impact on various diseases, we have begun to subcategorize them into TDP-43 proteinopathies. Furthermore, glial cell dysfunction contributes to various disorders, and TDP-43 is involved with glial cells via multiple pathways (direct or indirect) that aggravate the pathophysiology of such disorders. We are only now discovering and understanding the vast and diverse roles TDP-43 plays on neuronal cells and its effects on gliosis and neurodegenerative pathologies. It has multiple roles: mRNA maturation and splicing, transporting and maintaining mRNA stability, a component of stress granules and ubiquitination of dysfunctional or misfolded proteins, transcription of microtubule “Futsch” protein, and a role in maintaining synapse integrity and possibly more as we continue to research and uncover the labyrinth of the neuronal network. TDP-43 could also have a detrimental impact on glial cell activation and pathophysiology in diseases where TDP-43 is associated with its pathogenesis. We will review the pathophysiology of various neurological disorders that are associated with the alteration of the TDP-43 levels along with glial cell activation. Further, multiple diseases have glial cell participation in the pathogenesis, and the role of TDP-43 has not yet been investigated. We, therefore, explore those disorders in the context of both TDP-43 and glial cells involvement. This step will enhance the understanding of neurodegeneration where further research could prompt curative modalities with the advancement of technology.

          Related collections

          Most cited references133

          • Record: found
          • Abstract: found
          • Article: not found

          Synaptic pruning by microglia is necessary for normal brain development.

          Microglia are highly motile phagocytic cells that infiltrate and take up residence in the developing brain, where they are thought to provide a surveillance and scavenging function. However, although microglia have been shown to engulf and clear damaged cellular debris after brain insult, it remains less clear what role microglia play in the uninjured brain. Here, we show that microglia actively engulf synaptic material and play a major role in synaptic pruning during postnatal development in mice. These findings link microglia surveillance to synaptic maturation and suggest that deficits in microglia function may contribute to synaptic abnormalities seen in some neurodevelopmental disorders.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Microglia sculpt postnatal neural circuits in an activity and complement-dependent manner.

            Microglia are the resident CNS immune cells and active surveyors of the extracellular environment. While past work has focused on the role of these cells during disease, recent imaging studies reveal dynamic interactions between microglia and synaptic elements in the healthy brain. Despite these intriguing observations, the precise function of microglia at remodeling synapses and the mechanisms that underlie microglia-synapse interactions remain elusive. In the current study, we demonstrate a role for microglia in activity-dependent synaptic pruning in the postnatal retinogeniculate system. We show that microglia engulf presynaptic inputs during peak retinogeniculate pruning and that engulfment is dependent upon neural activity and the microglia-specific phagocytic signaling pathway, complement receptor 3(CR3)/C3. Furthermore, disrupting microglia-specific CR3/C3 signaling resulted in sustained deficits in synaptic connectivity. These results define a role for microglia during postnatal development and identify underlying mechanisms by which microglia engulf and remodel developing synapses. Copyright © 2012 Elsevier Inc. All rights reserved.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Limbic-predominant age-related TDP-43 encephalopathy (LATE): consensus working group report

              Nelson et al. describe a recently recognized brain disorder that mimics the clinical features of Alzheimer’s disease: Limbic-predominant Age-related TDP-43 Encephalopathy (LATE). They review the literature and present consensus-based recommendations of an international, multidisciplinary working group, providing guidelines for diagnosis and staging of LATE neuropathological changes.
                Bookmark

                Author and article information

                Journal
                Cureus
                Cureus
                2168-8184
                Cureus
                Cureus (Palo Alto (CA) )
                2168-8184
                24 October 2022
                October 2022
                : 14
                : 10
                : e30639
                Affiliations
                [1 ] Internal Medicine, Larkin Community Hospital, Miami, USA
                [2 ] Internal Medicine, Ross University School of Medicine, Miramar, USA
                [3 ] Internal Medicine, Medical University of the Americas, Devens, USA
                [4 ] Internal Medicine, University of Medicine and Health Sciences, New York, USA
                [5 ] Internal Medicine, Hackensack Meridian Ocean Medical Center, Brick Township, USA
                [6 ] Internal Medicine, University of Baghdad School of Medicine, Baghdad, IRQ
                Author notes
                Article
                10.7759/cureus.30639
                9683637
                36439561
                f077bfa2-dfe9-4c2d-bac2-68eb832537de
                Copyright © 2022, Hussain et al.

                This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

                History
                : 24 October 2022
                Categories
                Internal Medicine
                Neurology
                Pathology

                myelination,amyotrophic lateral sclerosis,glycogen,neurological disorders,dementia,microglia,alzheimer's disease,astrocytes,gliosis,tdp-43

                Comments

                Comment on this article