Guanyu Li 1 , 2 , Yi Ren 1 , 2 , Xiaoyi Zhang 1 , 2 , Shurui Zhao 1 , 2 , Yaonan Wang 1 , 2 , Jianhui Wu 1 , 2 , Shiqi Peng 1 , 2 , Ming Zhao 1 , 2 , 3
05 December 2019
The discovery of novel derivative of berberine (BBR) having higher anti-tumor activity in vivo is of clinical importance. In this profile, 13-[CH 2CO-Cys-(Bzl)-OBzl]-berberine (13-Cys-BBR) was prepared for related assays.
The object of preparation and evaluation is to show the advantages of 13-Cys-BBR over BBR in both in vitro and in vivo anti-tumor actions, furthermore to correlate the proliferation of cancer cells with ROS formation and anti-apoptosis protein (XIAP) expression inside cancer cells.
Transwell chamber was used to simulate the intestinal and cell wall for bioavailability evaluation; MTT assay was used to evaluate the in vitro anti-proliferation activity; fluorescein isothiocyanate content was used to represent ROS level in HCT-8 cells; Western blot assay was used to quantify the expression of XIAP, caspase-3, and poly ADP-ribose polymerase in HCT-8 cells; and S180 mouse model was used to evaluate the in vivo anti-tumor activity.
In vitro the IC 50 values (~15–40 μM) of 13-Cys-BBR against the proliferation of eight cancer cell lines were significantly lower than those of BBR (~25–140 μM); the content of ROS formed inside HCT-8 cells treated by 13-Cys-BBR was ~3.44-folds higher than that inside HCT-8 cells treated by BBR; the expression of XIAP in HCT-8 cells treated by 13-Cys-BBR was ~1.21-folds lower than that in HCT-8 cells treated by BBR; the tumor weight of S180 mice orally treated by 2 μmol/kg/day of 13-Cys-BBR (~1.5 g) was significantly lower than that of S180 mice orally treated by 2 μmol/kg/day of BBR (~2.5 g); and the active pocket of XIAP was more suitable for 13-Cys-BBR than for BBR.
This work is published and licensed by Dove Medical Press Limited. The full terms of this license are available at https://www.dovepress.com/terms.php and incorporate the Creative Commons Attribution – Non Commercial (unported, v3.0) License ( http://creativecommons.org/licenses/by-nc/3.0/). By accessing the work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed. For permission for commercial use of this work, please see paragraphs 4.2 and 5 of our Terms ( https://www.dovepress.com/terms.php).