16
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      The Physiology of Heat Tolerance in Small Endotherms

      1 , 2 , 3
      Physiology
      American Physiological Society

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Understanding the heat tolerances of small mammals and birds has taken on new urgency with the advent of climate change. Here, we review heat tolerance limits, pathways of evaporative heat dissipation that permit the defense of body temperature during heat exposure, and mechanisms operating at tissue, cellular, and molecular levels.

          Related collections

          Most cited references117

          • Record: found
          • Abstract: found
          • Article: not found

          Heat-shock proteins, molecular chaperones, and the stress response: evolutionary and ecological physiology.

          Molecular chaperones, including the heat-shock proteins (Hsps), are a ubiquitous feature of cells in which these proteins cope with stress-induced denaturation of other proteins. Hsps have received the most attention in model organisms undergoing experimental stress in the laboratory, and the function of Hsps at the molecular and cellular level is becoming well understood in this context. A complementary focus is now emerging on the Hsps of both model and nonmodel organisms undergoing stress in nature, on the roles of Hsps in the stress physiology of whole multicellular eukaryotes and the tissues and organs they comprise, and on the ecological and evolutionary correlates of variation in Hsps and the genes that encode them. This focus discloses that (a) expression of Hsps can occur in nature, (b) all species have hsp genes but they vary in the patterns of their expression, (c) Hsp expression can be correlated with resistance to stress, and (d) species' thresholds for Hsp expression are correlated with levels of stress that they naturally undergo. These conclusions are now well established and may require little additional confirmation; many significant questions remain unanswered concerning both the mechanisms of Hsp-mediated stress tolerance at the organismal level and the evolutionary mechanisms that have diversified the hsp genes.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The heat shock response: life on the verge of death.

            Organisms must survive a variety of stressful conditions, including sudden temperature increases that damage important cellular structures and interfere with essential functions. In response to heat stress, cells activate an ancient signaling pathway leading to the transient expression of heat shock or heat stress proteins (Hsps). Hsps exhibit sophisticated protection mechanisms, and the most conserved Hsps are molecular chaperones that prevent the formation of nonspecific protein aggregates and assist proteins in the acquisition of their native structures. In this Review, we summarize the concepts of the protective Hsp network. Copyright © 2010 Elsevier Inc. All rights reserved.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Heat shock proteins: modifying factors in physiological stress responses and acquired thermotolerance.

              Cells from virtually all organisms respond to a variety of stresses by the rapid synthesis of a highly conserved set of polypeptides termed heat shock proteins (HSPs). The precise functions of HSPs are unknown, but there is considerable evidence that these stress proteins are essential for survival at both normal and elevated temperatures. HSPs also appear to play a critical role in the development of thermotolerance and protection from cellular damage associated with stresses such as ischemia, cytokines, and energy depletion. These observations suggest that HSPs play an important role in both normal cellular homeostasis and the stress response. This mini-review examines recent evidence and hypotheses suggesting that the HSPs may be important modifying factors in cellular responses to a variety of physiologically relevant conditions such as hyperthermia, exercise, oxidative stress, metabolic challenge, and aging.
                Bookmark

                Author and article information

                Journal
                Physiology
                Physiology
                American Physiological Society
                1548-9213
                1548-9221
                September 01 2019
                September 01 2019
                : 34
                : 5
                : 302-313
                Affiliations
                [1 ]South African Research Chair in Conservation Physiology, National Zoological Garden, South African National Biodiversity Institute, Pretoria, South Africa
                [2 ]DST-NRF Centre of Excellence at the FitzPatrick Institute, Department of Zoology and Entomology, University of Pretoria, Hatfield, South Africa
                [3 ]UNM Biology Department, University of New Mexico, Albuquerque, New Mexico
                Article
                10.1152/physiol.00011.2019
                31389778
                f0896fa9-210f-4cf5-9449-6cde113dd656
                © 2019
                History

                Comments

                Comment on this article