19
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Identification and characterization of terpene synthase genes accounting for volatile terpene emissions in flowers of Freesia x hybrida

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The molecular and biochemical basis of spatiotemporal emissions of flower scent molecules in two Freesia cultivars is described, paving the way to investigate their roles in Freesia speciation and reproductive fitness.

          Abstract

          The development of flower scents was a crucial event in biological evolution, providing olfactory signals by which plants can attract pollinators. In this study, bioinformatics, metabolomics, and biochemical and molecular methodologies were integrated to investigate the candidate genes involved in the biosynthesis of volatile components in two cultivars of Freesia x hybrida, Red River ® and Ambiance, which release different categories of compounds. We found that terpene synthase ( TPS) genes were the pivotal genes determining spatiotemporal release of volatile compounds in both cultivars. Eight FhTPS genes were isolated and six were found to be functional: FhTPS1 was a single-product enzyme catalyzing the formation of linalool, whereas the other four FhTPS proteins were multi-product enzymes, among which FhTPS4, FhTPS6, and FhTPS7 could recognize geranyl diphosphate and farnesyl diphosphate simultaneously. The FhTPS enzymatic products closely matched the volatile terpenes emitted from flowers, and significant correlations were found between release of volatile terpenes and FhTPS gene expression. Graphical models based on these results are proposed that summarize the biosynthesis of Freesia floral volatile terpenes. The characterization of FhTPS genes paves the way to decipher their roles in the speciation and fitness of Freesia, and this knowledge could also be used to introduce or enhance scent in other plants.

          Related collections

          Most cited references60

          • Record: found
          • Abstract: found
          • Article: not found

          Biosynthesis, function and metabolic engineering of plant volatile organic compounds.

          Plants synthesize an amazing diversity of volatile organic compounds (VOCs) that facilitate interactions with their environment, from attracting pollinators and seed dispersers to protecting themselves from pathogens, parasites and herbivores. Recent progress in -omics technologies resulted in the isolation of genes encoding enzymes responsible for the biosynthesis of many volatiles and contributed to our understanding of regulatory mechanisms involved in VOC formation. In this review, we largely focus on the biosynthesis and regulation of plant volatiles, the involvement of floral volatiles in plant reproduction as well as their contribution to plant biodiversity and applications in agriculture via crop-pollinator interactions. In addition, metabolic engineering approaches for both the improvement of plant defense and pollinator attraction are discussed in light of methodological constraints and ecological complications that limit the transition of crops with modified volatile profiles from research laboratories to real-world implementation. © 2013 The Authors. New Phytologist © 2013 New Phytologist Trust.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Multiple stress factors and the emission of plant VOCs.

            Individual biotic and abiotic stresses, such as high temperature, high light and herbivore attack, are well known to increase the emission of volatile organic compounds from plants. Much less is known about the effect of multiple, co-occurring stress factors, despite the fact that multiple stresses are probably the rule under natural conditions. Here, after briefly summarizing the basic effects of single stress factors on the volatile emission of plants, we survey the influence of multiple stresses. When two or more stresses co-occur their effects are sometimes additive, while in other cases the influence of one stress has priority. Further investigations on the effects of multiple stress factors will improve our understanding of the patterns and functions of plant volatile emission. Copyright 2010 Elsevier Ltd. All rights reserved.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Functional Annotation, Genome Organization and Phylogeny of the Grapevine (Vitis vinifera) Terpene Synthase Gene Family Based on Genome Assembly, FLcDNA Cloning, and Enzyme Assays

              Background Terpenoids are among the most important constituents of grape flavour and wine bouquet, and serve as useful metabolite markers in viticulture and enology. Based on the initial 8-fold sequencing of a nearly homozygous Pinot noir inbred line, 89 putative terpenoid synthase genes (VvTPS) were predicted by in silico analysis of the grapevine (Vitis vinifera) genome assembly [1]. The finding of this very large VvTPS family, combined with the importance of terpenoid metabolism for the organoleptic properties of grapevine berries and finished wines, prompted a detailed examination of this gene family at the genomic level as well as an investigation into VvTPS biochemical functions. Results We present findings from the analysis of the up-dated 12-fold sequencing and assembly of the grapevine genome that place the number of predicted VvTPS genes at 69 putatively functional VvTPS, 20 partial VvTPS, and 63 VvTPS probable pseudogenes. Gene discovery and annotation included information about gene architecture and chromosomal location. A dense cluster of 45 VvTPS is localized on chromosome 18. Extensive FLcDNA cloning, gene synthesis, and protein expression enabled functional characterization of 39 VvTPS; this is the largest number of functionally characterized TPS for any species reported to date. Of these enzymes, 23 have unique functions and/or phylogenetic locations within the plant TPS gene family. Phylogenetic analyses of the TPS gene family showed that while most VvTPS form species-specific gene clusters, there are several examples of gene orthology with TPS of other plant species, representing perhaps more ancient VvTPS, which have maintained functions independent of speciation. Conclusions The highly expanded VvTPS gene family underpins the prominence of terpenoid metabolism in grapevine. We provide a detailed experimental functional annotation of 39 members of this important gene family in grapevine and comprehensive information about gene structure and phylogeny for the entire currently known VvTPS gene family.
                Bookmark

                Author and article information

                Journal
                J Exp Bot
                J. Exp. Bot
                exbotj
                Journal of Experimental Botany
                Oxford University Press (UK )
                0022-0957
                1460-2431
                17 August 2018
                12 June 2018
                12 June 2018
                : 69
                : 18
                : 4249-4265
                Affiliations
                Key Laboratory of Molecular Epigenetics of MOE and Institute of Genetics & Cytology, Northeast Normal University, Changchun, China
                Author notes
                Article
                ery224
                10.1093/jxb/ery224
                6093421
                29901784
                f08b4bbf-1e37-415e-82d8-8045761e5ec8
                © The Author(s) 2018. Published by Oxford University Press on behalf of the Society for Experimental Biology.

                This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 17 April 2018
                : 06 June 2017
                Page count
                Pages: 17
                Funding
                Funded by: National Key R & D Program of China
                Award ID: 2016YFD0101900
                Funded by: National Natural Science Foundation of China 10.13039/501100001809
                Award ID: 31300271
                Award ID: 31570295
                Funded by: Introducing Talents to Universities
                Award ID: B07017
                Funded by: Fundamental Research Fund for the Central Universities
                Award ID: 2412017FZ019
                Categories
                Research Papers
                Crop Molecular Genetics

                Plant science & Botany
                emission pattern,fitness,flower scent,freesia,ornamental plant,speciation,substrate selectivity,terpene synthase

                Comments

                Comment on this article