131
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Oil palm genome sequence reveals divergence of interfertile species in old and new worlds

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Oil palm is the most productive oil-bearing crop. Planted on only 5% of the total vegetable oil acreage, palm oil accounts for 33% of vegetable oil, and 45% of edible oil worldwide, but increased cultivation competes with dwindling rainforest reserves. We report the 1.8 gigabase (Gb) genome sequence of the African oil palm Elaeis guineensis, the predominant source of worldwide oil production. 1.535 Gb of assembled sequence and transcriptome data from 30 tissue types were used to predict at least 34,802 genes, including oil biosynthesis genes and homologues of WRINKLED1 (WRI1), and other transcriptional regulators 1 , which are highly expressed in the kernel. We also report the draft sequence of the S. American oil palm Elaeis oleifera, which has the same number of chromosomes (2n=32) and produces fertile interspecific hybrids with E. guineensis 2 , but appears to have diverged in the new world. Segmental duplications of chromosome arms define the palaeotetraploid origin of palm trees. The oil palm sequence enables the discovery of genes for important traits as well as somaclonal epigenetic alterations which restrict the use of clones in commercial plantings 3 , and thus helps achieve sustainability for biofuels and edible oils, reducing the rainforest footprint of this tropical plantation crop.

          Related collections

          Most cited references34

          • Record: found
          • Abstract: found
          • Article: not found

          SSAHA: a fast search method for large DNA databases.

          We describe an algorithm, SSAHA (Sequence Search and Alignment by Hashing Algorithm), for performing fast searches on databases containing multiple gigabases of DNA. Sequences in the database are preprocessed by breaking them into consecutive k-tuples of k contiguous bases and then using a hash table to store the position of each occurrence of each k-tuple. Searching for a query sequence in the database is done by obtaining from the hash table the "hits" for each k-tuple in the query sequence and then performing a sort on the results. We discuss the effect of the tuple length k on the search speed, memory usage, and sensitivity of the algorithm and present the results of computational experiments which show that SSAHA can be three to four orders of magnitude faster than BLAST or FASTA, while requiring less memory than suffix tree methods. The SSAHA algorithm is used for high-throughput single nucleotide polymorphism (SNP) detection and very large scale sequence assembly. Also, it provides Web-based sequence search facilities for Ensembl projects.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The TIGR Plant Repeat Databases: a collective resource for the identification of repetitive sequences in plants.

            In a number of higher plants, a substantial portion of the genome is composed of repetitive sequences that can hinder genome annotation and sequencing efforts. To better understand the nature of repetitive sequences in plants and provide a resource for identifying such sequences, we constructed databases of repetitive sequences for 12 plant genera: Arabidopsis, Brassica, Glycine, Hordeum, Lotus, Lycopersicon, Medicago, Oryza, Solanum, Sorghum, Triticum and Zea (www.tigr.org/tdb/e2k1/plant. repeats/index.shtml). The repetitive sequences within each database have been coded into super-classes, classes and sub-classes based on sequence and structure similarity. These databases are available for sequence similarity searches as well as downloadable files either as entire databases or subsets of each database. To further the utility for comparative studies and to provide a resource for searching for repetitive sequences in other genera within these families, repetitive sequences have been combined into four databases to represent the Brassicaceae, Fabaceae, Gramineae and Solanaceae families. Collectively, these databases provide a resource for the identification, classification and analysis of repetitive sequences in plants.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Comparative transcriptome and metabolite analysis of oil palm and date palm mesocarp that differ dramatically in carbon partitioning.

              Oil palm can accumulate up to 90% oil in its mesocarp, the highest level observed in the plant kingdom. In contrast, the closely related date palm accumulates almost exclusively sugars. To gain insight into the mechanisms that lead to such an extreme difference in carbon partitioning, the transcriptome and metabolite content of oil palm and date palm were compared during mesocarp development. Compared with date palm, the high oil content in oil palm was associated with much higher transcript levels for all fatty acid synthesis enzymes, specific plastid transporters, and key enzymes of plastidial carbon metabolism, including phosphofructokinase, pyruvate kinase, and pyruvate dehydrogenase. Transcripts representing an ortholog of the WRI1 transcription factor were 57-fold higher in oil palm relative to date palm and displayed a temporal pattern similar to its target genes. Unexpectedly, despite more than a 100-fold difference in flux to lipids, most enzymes of triacylglycerol assembly were expressed at similar levels in oil palm and date palm. Similarly, transcript levels for all but one cytosolic enzyme of glycolysis were comparable in both species. Together, these data point to synthesis of fatty acids and supply of pyruvate in the plastid, rather than acyl assembly into triacylglycerol, as a major control over the storage of oil in the mesocarp of oil palm. In addition to greatly increasing molecular resources devoted to oil palm and date palm, the combination of temporal and comparative studies illustrates how deep sequencing can provide insights into gene expression patterns of two species that lack genome sequence information.
                Bookmark

                Author and article information

                Journal
                0410462
                6011
                Nature
                Nature
                Nature
                0028-0836
                1476-4687
                18 June 2013
                24 July 2013
                15 August 2013
                19 February 2014
                : 500
                : 7462
                : 335-339
                Affiliations
                [1 ]Malaysian Palm Oil Board, 6, Persiaran Institusi Bandar Baru Bangi, 43000 Kajang Selangor, Malaysia
                [2 ]Orion Genomics, 4041 Forest Park Avenue, St. Louis, MO 63108, USA
                [3 ]Sackler Institute for Comparative Genomics, American Museum of Natural History, New York, NY 10024, USA
                [4 ]Arizona Genome Institute, University of Arizona, Tucson AZ 85705, USA
                [5 ]The Genome Institute at Washington University, Washington University School of Medicine, Saint Louis, MO 63108, USA
                [6 ]Howard Hughes Medical Institute-Gordon and Betty Moore Foundation, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA
                Author notes
                [*]

                These authors contributed equally to this work.

                Article
                HHMIMS481630
                10.1038/nature12309
                3929164
                23883927
                f09c18af-d620-46f4-82f9-50babf3ded45

                Users may view, print, copy, download and text and data- mine the content in such documents, for the purposes of academic research, subject always to the full Conditions of use: http://www.nature.com/authors/editorial_policies/license.html#terms

                History
                Categories
                Article

                Uncategorized
                Uncategorized

                Comments

                Comment on this article