453
views
1
recommends
+1 Recommend
1 collections
    9
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Developing Therapies with Functional Beta Cells to Treat Diabetes

      1
      International Journal of Translational Science
      River Publishers

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Most cited references83

          • Record: found
          • Abstract: found
          • Article: not found

          Pancreatic endoderm derived from human embryonic stem cells generates glucose-responsive insulin-secreting cells in vivo.

          Development of a cell therapy for diabetes would be greatly aided by a renewable supply of human beta-cells. Here we show that pancreatic endoderm derived from human embryonic stem (hES) cells efficiently generates glucose-responsive endocrine cells after implantation into mice. Upon glucose stimulation of the implanted mice, human insulin and C-peptide are detected in sera at levels similar to those of mice transplanted with approximately 3,000 human islets. Moreover, the insulin-expressing cells generated after engraftment exhibit many properties of functional beta-cells, including expression of critical beta-cell transcription factors, appropriate processing of proinsulin and the presence of mature endocrine secretory granules. Finally, in a test of therapeutic potential, we demonstrate that implantation of hES cell-derived pancreatic endoderm protects against streptozotocin-induced hyperglycemia. Together, these data provide definitive evidence that hES cells are competent to generate glucose-responsive, insulin-secreting cells.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Production of pancreatic hormone-expressing endocrine cells from human embryonic stem cells.

            Of paramount importance for the development of cell therapies to treat diabetes is the production of sufficient numbers of pancreatic endocrine cells that function similarly to primary islets. We have developed a differentiation process that converts human embryonic stem (hES) cells to endocrine cells capable of synthesizing the pancreatic hormones insulin, glucagon, somatostatin, pancreatic polypeptide and ghrelin. This process mimics in vivo pancreatic organogenesis by directing cells through stages resembling definitive endoderm, gut-tube endoderm, pancreatic endoderm and endocrine precursor--en route to cells that express endocrine hormones. The hES cell-derived insulin-expressing cells have an insulin content approaching that of adult islets. Similar to fetal beta-cells, they release C-peptide in response to multiple secretory stimuli, but only minimally to glucose. Production of these hES cell-derived endocrine cells may represent a critical step in the development of a renewable source of cells for diabetes cell therapy.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              Long-term complications of diabetes mellitus.

                Bookmark

                Author and article information

                Journal
                JTS
                International Journal of Translational Science
                IJTS
                River Publishers
                2246-8765
                2015
                : 2015
                : 1
                : 41-66
                Affiliations
                [1 ]College of life science, Northeast Forestry University, Harbin, China
                Article
                10.13052/ijts2246-8765.20151004
                f09f6e28-f293-46d5-a9af-d073e28d2eee
                © 2015

                This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 Unported License. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

                History

                Engineering,Materials science
                Engineering, Materials science

                Comments

                Comment on this article