6
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Evaluation of human-baited double net trap and human-odour-baited CDC light trap for outdoor host-seeking malaria vector surveillance in Kenya and Ethiopia

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Surveillance of outdoor host-seeking malaria vectors is crucial to monitor changes in vector biting behaviour and evaluate the impact of vector control interventions. Human landing catch (HLC) has been considered the most reliable and gold standard surveillance method to estimate human-biting rates. However, it is labour-intensive, and its use is facing an increasing ethical concern due to potential risk of exposure to infectious mosquito bites. Thus, alternative methods are required. This study was conducted to evaluate the performance of human-odour-baited CDC light trap (HBLT) and human-baited double net trap (HDNT) for outdoor host-seeking malaria vector surveillance in Kenya and Ethiopia.

          Methods

          The sampling efficiency of HBLT and HDNT was compared with CDC light trap and HLC using Latin Square Design in Ahero and Iguhu sites, western Kenya and Bulbul site, southwestern Ethiopia between November 2015 and December 2018. The differences in Anopheles mosquito density among the trapping methods were compared using generalized linear model.

          Results

          Overall, 16,963 female Anopheles mosquitoes comprising Anopheles gambiae sensu lato (s.l.), Anopheles funestus s.l., Anopheles pharoensis, Anopheles coustani and Anopheles squamosus were collected. PCR results (n = 552) showed that Anopheles arabiensis was the only member of An. gambiae s.l. in Ahero and Bulbul, while 15.7% An. arabiensis and 84.3% An. gambiae sensu stricto (s.s.) constituted An. gambiae s.l. in Iguhu. In Ahero, HBLT captured 2.23 times as many An. arabiensis and 2.11 times as many An. funestus as CDC light trap. In the same site, HDNT yielded 3.43 times more An. arabiensis and 3.24 times more An. funestus than HBLT. In Iguhu, the density of Anopheles mosquitoes did not vary between the traps (p > 0.05). In Bulbul, HBLT caught 2.19 times as many An. arabiensis as CDC light trap, while HDNT caught 6.53 times as many An. arabiensis as CDC light trap. The mean density of An. arabiensis did not vary between HDNT and HLC (p = 0.098), whereas the HLC yielded significantly higher density of An. arabiensis compared to HBLT and CDC light trap. There was a significant density-independent positive correlation between HDNT and HLC (r = 0.69).

          Conclusion

          This study revealed that both HBLT and HDNT caught higher density of malaria vectors than conventional CDC light trap. Moreover, HDNT yielded a similar vector density as HLC, suggesting that it could be an alternative tool to HLC for outdoor host-seeking malaria vector surveillance.

          Related collections

          Most cited references55

          • Record: found
          • Abstract: found
          • Article: not found

          Identification of single specimens of the Anopheles gambiae complex by the polymerase chain reaction.

          A ribosomal DNA-polymerase chain reaction (PCR) method has been developed for species identification of individuals of the five most widespread members of the Anopheles gambiae complex, a group of morphologically indistinguishable sibling mosquito species that includes the major vectors of malaria in Africa. The method, which is based on species-specific nucleotide sequences in the ribosomal DNA intergenic spacers, may be used to identify both species and interspecies hybrids, regardless of life stage, using either extracted DNA or fragments of a specimen. Intact portions of a mosquito as small as an egg or the segment of one leg may be placed directly into the PCR mixture for amplification and analysis. The method uses a cocktail of five 20-base oligonucleotides to identify An. gambiae, An. arabiensis, An. quadriannnulatus, and either An. melas in western Africa or An. melas in eastern and southern Africa.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Measurement in Medicine: The Analysis of Method Comparison Studies

              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Increased proportions of outdoor feeding among residual malaria vector populations following increased use of insecticide-treated nets in rural Tanzania

              Background Insecticide-treated nets (ITNs) and indoor residual spraying (IRS) represent the front-line tools for malaria vector control globally, but are optimally effective where the majority of baseline transmission occurs indoors. In the surveyed area of rural southern Tanzania, bed net use steadily increased over the last decade, reducing malaria transmission intensity by 94%. Methods Starting before bed nets were introduced (1997), and then after two milestones of net use had been reached-75% community-wide use of untreated nets (2004) and then 47% use of ITNs (2009)-hourly biting rates of malaria vectors from the Anopheles gambiae complex and Anopheles funestus group were surveyed. Results In 1997, An. gambiae s.l. and An. funestus mosquitoes exhibited a tendency to bite humans inside houses late at night. For An. gambiae s.l., by 2009, nocturnal activity was less (p = 0.0018). At this time, the sibling species composition of the complex had shifted from predominantly An. gambiae s.s. to predominantly An. arabiensis. For An. funestus, by 2009, nocturnal activity was less (p = 0.0054) as well as the proportion biting indoors (p < 0.0001). At this time, An. funestus s.s. remained the predominant species within this group. As a consequence of these altered feeding patterns, the proportion (mean ± standard error) of human contact with mosquitoes (bites per person per night) occurring indoors dropped from 0.99 ± 0.002 in 1997 to 0.82 ± 0.008 in 2009 for the An. gambiae complex (p = 0.0143) and from 1.00 ± <0.001 to only 0.50 ± 0.048 for the An. funestus complex (p = 0.0004) over the same time period. Conclusions High usage of ITNs can dramatically alter African vector populations so that intense, predominantly indoor transmission is replaced by greatly lowered residual transmission, a greater proportion of which occurs outdoors. Regardless of the underlying mechanism, the residual, self-sustaining transmission will respond poorly to further insecticidal measures within houses. Additional vector control tools which target outdoor biting mosquitoes at the adult or immature stages are required to complement ITNs and IRS.
                Bookmark

                Author and article information

                Contributors
                teshedege@gmail.com
                Journal
                Malar J
                Malar. J
                Malaria Journal
                BioMed Central (London )
                1475-2875
                7 May 2020
                7 May 2020
                2020
                : 19
                : 174
                Affiliations
                [1 ]GRID grid.411903.e, ISNI 0000 0001 2034 9160, School of Medical Laboratory Sciences, Faculty of Health Sciences, , Jimma University, ; Jimma, Ethiopia
                [2 ]GRID grid.33058.3d, ISNI 0000 0001 0155 5938, Centre for Global Health Research, , Kenya Medical Research Institute, ; Kisumu, Kenya
                [3 ]GRID grid.411903.e, ISNI 0000 0001 2034 9160, Tropical and Infectious Diseases Research Center (TIDRC), , Jimma University, ; Jimma, Ethiopia
                [4 ]GRID grid.266093.8, ISNI 0000 0001 0668 7243, Program in Public Health, College of Health Sciences, , University of California at Irvine, ; Irvine, CA 92697 USA
                [5 ]GRID grid.442486.8, ISNI 0000 0001 0744 8172, School of Public Health and Community Development, , Maseno University, ; Kisumu, Kenya
                Author information
                http://orcid.org/0000-0002-3518-2372
                Article
                3244
                10.1186/s12936-020-03244-2
                7206766
                32381009
                f0b5573a-b605-494b-b5d8-e243abf29be5
                © The Author(s) 2020

                Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver ( http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

                History
                : 13 January 2020
                : 23 April 2020
                Funding
                Funded by: FundRef http://dx.doi.org/10.13039/100000002, National Institutes of Health;
                Award ID: R01 AI050243
                Award ID: U19 AI129326
                Award ID: D43 TW001505
                Award Recipient :
                Categories
                Research
                Custom metadata
                © The Author(s) 2020

                Infectious disease & Microbiology
                malaria vectors,outdoor host-seeking,surveillance,human-odour-baited cdc light trap,human-baited double net trap,kenya,ethiopia

                Comments

                Comment on this article