42
views
0
recommends
+1 Recommend
0 collections
    2
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      IL-6 secreted by cancer-associated fibroblasts promotes epithelial-mesenchymal transition and metastasis of gastric cancer via JAK2/STAT3 signaling pathway

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Cancer-associated fibroblasts (CAFs), as the activated fibroblasts in tumor stroma, are important modifiers of tumor progression. However, the molecular mechanisms underlying the tumor-promoting properties of CAFs in gastric cancer remain unclear. Here, we show that CAFs isolated from gastric cancer produce significant amounts of interleukin-6 (IL-6). CAFs enhances the migration and EMT of gastric cancer cells through the secretion of IL-6 that activates Janus kinase 2/signal transducers and activators of transcription (JAK2/STAT3) pathway in gastric cancer cells, while deprivation of IL-6 using a neutralizing antibody or inhibition of JAK/STAT3 pathway with specific inhibitor AG490 markedly attenuates these phenotypes in gastric cancer cells induced by CAFs. Moreover, silencing IL-6 expression in CAFs or inhibiting JAK2/STAT3 pathway in gastric cancer cells impairs tumor peritoneal metastasis induced by CAFs in vivo. Taken together, these results suggest that CAFs in the tumor microenvironment promote the progression of gastric cancer through IL-6/JAK2/STAT3 signaling, and IL-6 targeted therapy could be a complementary approach against gastric cancer by exerting their action on stromal fibroblasts.

          Related collections

          Most cited references17

          • Record: found
          • Abstract: found
          • Article: not found

          Cancer associated fibroblasts: the dark side of the coin.

          Valid experimental evidence has recently shown that progression of malignant tumors does not depend exclusively on cell-autonomous properties of the cancer cells, but is also deeply influenced by tumor stroma reactivity and undergoes a strict microenvironmental control. Beside structural environmental components as extracellular matrix (ECM) or hypoxia, stromal cells as macrophages, endothelial cells, and cancer-associated fibroblasts (CAFs) play a definite role in cancer progression. This review summarizes our current knowledge on the role of CAFs in tumor progression towards an aggressive phenotype, with particular emphasis on invasiveness, stemness, and preparation of metastatic niche. The controversial origins of CAFs as well as the therapeutical implications of targeting CAFs for anticancer therapy are discussed.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Interleukin-6 released by colon cancer-associated fibroblasts is critical for tumour angiogenesis: anti-interleukin-6 receptor antibody suppressed angiogenesis and inhibited tumour–stroma interaction

            Background: Interleukin-6 (IL-6) has an important role in cancer progression, and high levels of plasma IL-6 are correlated with a poor prognosis in a variety of cancers. It has also been reported that tumour stromal fibroblasts are necessary for steps in cancer progression, such as angiogenesis. There have been few reports of a correlation between fibroblast actions and IL-6 levels. In this study, we examined the correlation between cancer stromal fibroblasts and IL-6 and the utility of IL-6 as a therapeutic target in human colon cancer. Methods: The expression levels of IL-6 and VEGF of fibroblasts and cancer cell lines were evaluated using real-time PCR and ELISA. The anti-angiogenic effect of inhibiting IL-6 signalling was measured in an angiogenesis model and animal experiment. Results: We demonstrate that stromal fibroblasts isolated from colon cancer produced significant amounts of IL-6 and that colon cancer cells enhanced IL-6 production by stromal fibroblasts. Moreover, IL-6 enhanced VEGF production by fibroblasts, thereby inducing angiogenesis. In vivo, anti-IL6 receptor antibody targeting stromal tissue showed greater anti-tumour activity than did anti-IL6 receptor antibody targeting xenografted cancer cells. Conclusion: Cancer stromal fibroblasts were an important source of IL-6 in colon cancer. IL-6 produced by activated fibroblasts induced tumour angiogenesis by stimulating adjacent stromal fibroblasts. The relationship between IL-6 and stromal fibroblasts offers new approaches to cancer therapy.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Stromal expression of connective tissue growth factor promotes angiogenesis and prostate cancer tumorigenesis.

              Our previous studies have defined reactive stroma in human prostate cancer and have developed the differential reactive stroma (DRS) xenograft model to evaluate mechanisms of how reactive stroma promotes carcinoma tumorigenesis. Analysis of several normal human prostate stromal cell lines in the DRS model showed that some rapidly promoted LNCaP prostate carcinoma cell tumorigenesis and others had no effect. These differential effects were due, in part, to elevated angiogenesis and were transforming growth factor (TGF)-beta1 mediated. The present study was conducted to identify and evaluate candidate genes expressed in prostate stromal cells responsible for this differential tumor-promoting activity. Differential cDNA microarray analyses showed that connective tissue growth factor (CTGF) was expressed at low levels in nontumor-promoting prostate stromal cells and was constitutively expressed in tumor-promoting prostate stromal cells. TGF-beta1 stimulated CTGF message expression in nontumor-promoting prostate stromal cells. To evaluate the role of stromal-expressed CTGF in tumor progression, either engineered mouse prostate stromal fibroblasts expressing retroviral-introduced CTGF or 3T3 fibroblasts engineered with mifepristone-regulated CTGF were combined with LNCaP human prostate cancer cells in the DRS xenograft tumor model under different extracellular matrix conditions. Expression of CTGF in tumor-reactive stroma induced significant increases in microvessel density and xenograft tumor growth under several conditions tested. These data suggest that CTGF is a downstream mediator of TGF-beta1 action in cancer-associated reactive stroma and is likely to be one of the key regulators of angiogenesis in the tumor-reactive stromal microenvironment.
                Bookmark

                Author and article information

                Journal
                Oncotarget
                Oncotarget
                Oncotarget
                ImpactJ
                Oncotarget
                Impact Journals LLC
                1949-2553
                28 March 2017
                6 February 2017
                : 8
                : 13
                : 20741-20750
                Affiliations
                1 Department of Surgery, Shanghai Key Laboratory of Gastric Neoplasms, Shanghai Institute of Digestive Surgery, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200025, People's Republic of China
                Author notes
                Correspondence to: Liping Su, suliping@ 123456shsmu.edu.cn
                Article
                15119
                10.18632/oncotarget.15119
                5400541
                28186964
                f0b768bf-f640-4b02-91fb-ecca8eddb458
                Copyright: © 2017 Wu et al.

                This article is distributed under the terms of the Creative Commons Attribution License (CC-BY), which permits unrestricted use and redistribution provided that the original author and source are credited.

                History
                : 22 July 2016
                : 23 January 2017
                Categories
                Research Paper

                Oncology & Radiotherapy
                cancer-associated fibroblasts,interleukin-6,jak/stat3,gastric cancer
                Oncology & Radiotherapy
                cancer-associated fibroblasts, interleukin-6, jak/stat3, gastric cancer

                Comments

                Comment on this article