1,421
views
0
recommends
+1 Recommend
0 collections
    8
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Differential gene and transcript expression analysis of RNA-seq experiments with TopHat and Cufflinks.

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Recent advances in high-throughput cDNA sequencing (RNA-seq) can reveal new genes and splice variants and quantify expression genome-wide in a single assay. The volume and complexity of data from RNA-seq experiments necessitate scalable, fast and mathematically principled analysis software. TopHat and Cufflinks are free, open-source software tools for gene discovery and comprehensive expression analysis of high-throughput mRNA sequencing (RNA-seq) data. Together, they allow biologists to identify new genes and new splice variants of known ones, as well as compare gene and transcript expression under two or more conditions. This protocol describes in detail how to use TopHat and Cufflinks to perform such analyses. It also covers several accessory tools and utilities that aid in managing data, including CummeRbund, a tool for visualizing RNA-seq analysis results. Although the procedure assumes basic informatics skills, these tools assume little to no background with RNA-seq analysis and are meant for novices and experts alike. The protocol begins with raw sequencing reads and produces a transcriptome assembly, lists of differentially expressed and regulated genes and transcripts, and publication-quality visualizations of analysis results. The protocol's execution time depends on the volume of transcriptome sequencing data and available computing resources but takes less than 1 d of computer time for typical experiments and ∼1 h of hands-on time.

          Related collections

          Most cited references19

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Galaxy: a comprehensive approach for supporting accessible, reproducible, and transparent computational research in the life sciences

          Increased reliance on computational approaches in the life sciences has revealed grave concerns about how accessible and reproducible computation-reliant results truly are. Galaxy http://usegalaxy.org, an open web-based platform for genomic research, addresses these problems. Galaxy automatically tracks and manages data provenance and provides support for capturing the context and intent of computational methods. Galaxy Pages are interactive, web-based documents that provide users with a medium to communicate a complete computational analysis.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The transcriptional landscape of the yeast genome defined by RNA sequencing.

            The identification of untranslated regions, introns, and coding regions within an organism remains challenging. We developed a quantitative sequencing-based method called RNA-Seq for mapping transcribed regions, in which complementary DNA fragments are subjected to high-throughput sequencing and mapped to the genome. We applied RNA-Seq to generate a high-resolution transcriptome map of the yeast genome and demonstrated that most (74.5%) of the nonrepetitive sequence of the yeast genome is transcribed. We confirmed many known and predicted introns and demonstrated that others are not actively used. Alternative initiation codons and upstream open reading frames also were identified for many yeast genes. We also found unexpected 3'-end heterogeneity and the presence of many overlapping genes. These results indicate that the yeast transcriptome is more complex than previously appreciated.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Improving RNA-Seq expression estimates by correcting for fragment bias

              The biochemistry of RNA-Seq library preparation results in cDNA fragments that are not uniformly distributed within the transcripts they represent. This non-uniformity must be accounted for when estimating expression levels, and we show how to perform the needed corrections using a likelihood based approach. We find improvements in expression estimates as measured by correlation with independently performed qRT-PCR and show that correction of bias leads to improved replicability of results across libraries and sequencing technologies.
                Bookmark

                Author and article information

                Journal
                Nat Protoc
                Nature protocols
                Springer Science and Business Media LLC
                1750-2799
                1750-2799
                Mar 01 2012
                : 7
                : 3
                Affiliations
                [1 ] Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA. cole@broadinstitute.org
                Article
                NIHMS366741 nprot.2012.016
                10.1038/nprot.2012.016
                3334321
                22383036
                f0be0de6-3d8a-46c4-9bba-c2b84d5e9468
                History

                Comments

                Comment on this article